
Reducing Human Effort and Improving Quality in
Peer Code Reviews using Automatic Static Analysis

and Reviewer Recommendation
Vipin Balachandran

VMware
Bangalore, India

vbala@vmware.com

Abstract—Peer code review is a cost-effective software defect
detection technique. Tool assisted code review is a form of peer
code review, which can improve both quality and quantity of
reviews. However, there is a significant amount of human effort
involved even in tool based code reviews. Using static analysis
tools, it is possible to reduce the human effort by automating
the checks for coding standard violations and common defect
patterns. Towards this goal, we propose a tool called Review
Bot for the integration of automatic static analysis with the
code review process. Review Bot uses output of multiple static
analysis tools to publish reviews automatically. Through a user
study, we show that integrating static analysis tools with code
review process can improve the quality of code review. The
developer feedback for a subset of comments from automatic
reviews shows that the developers agree to fix 93% of all the
automatically generated comments. There is only 14.71% of all
the accepted comments which need improvements in terms of pri-
ority, comment message, etc. Another problem with tool assisted
code review is the assignment of appropriate reviewers. Review
Bot solves this problem by generating reviewer recommendations
based on change history of source code lines. Our experimental
results show that the recommendation accuracy is in the range
of 60%-92%, which is significantly better than a comparable
method based on file change history.

I. INTRODUCTION

Static analysis techniques work on a source representation
of the software with the goal of finding defects early in
the development. The peer code review process, where a
programmer presents his/her code to one or more colleagues,
is one of the most commonly used static analysis technique [1]
and has many advantages [2]. Code review is often considered
as a cost-effective defect detection technique due to the early
detection of bugs, when it is less expensive to fix [3].

There are different ways to perform a code review including
the most formal code inspection to the least formal over-the-
shoulder review [4]. Tool assisted code review uses software
assistance in different phases of the review and reduces the
large amount of paper work, which code inspections require. In
contrast to code inspection, tool assisted code review supports
distributed reviews and improves both quality and quantity of
reviews [5].

The main challenge in code review is the significant amount
of human effort involved; this is true even for tool assisted
code reviews. For example, in Mozilla projects, every commit
to the repository has to be reviewed by two independent

reviewers [6]. In VMware, most of the projects require at
least two reviewers for every commit. Another challenge in
code review is the learning curve involved in understanding
the defect patterns [7] and coding conventions to check for [2].
The experimental results in Section IV-A2 show that there
are plenty of coding standard violations in approved code
reviews. As mentioned in [2], this could be due to either
excessive amount of information involved in enforcing the
coding standard or the reviewers deprioritizing these checks
in favor of logic verification. We believe that checking for
coding standard violations during code review is as important
as defect detection due to the potential benefits of a consistent
coding style [2], [8], [9].

Another challenge in code review is to assign appropriate
reviewers. The reviews would be time consuming or inaccurate
if appropriate reviewers are not set. Mozilla projects require
that at least one of the reviewers must be the module owner
or the module owner’s peer [6]. In VMware, there is no
company-wide policy regarding the assignment of reviewers.
However, many projects do follow conventions similar to
Mozilla projects. The challenge here is to identify a module
owner, especially in the case of large projects spanning mul-
tiple geographies, where multiple developers making changes
in different parts of the same file is normal. Most of the time,
novice developers have to reach out to experienced develop-
ers or search the file revision history to assign appropriate
reviewers.

Automatic static analysis using static analysis tools is much
faster and cheaper than code reviews and quite effective in
defect detection [1], [10], [11]. Using static analysis tools, it is
possible to automate the checks for coding standard violations
and common defect patterns. In this paper, we introduce a tool
called Review Bot aimed to address the problems discussed
above with tool assisted code review. Review Bot is built
as an extension to Review Board [12], an open-source code
review tool, which has many features including file gathering,
diff display, comments collections, threaded discussions, etc.
Review Bot uses multiple static analysis tools to automate
the checks for coding standard violations and common defect
patterns, and publish code reviews using the output from these
tools. This will reduce the reviewer effort, since there is no
need to spend time on style related checks and common defect

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Software Engineering in Practice

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

931

patterns. The reviewers can pay more attention to logic veri-
fication rather than on checks which can be automated. This
would improve the reviewer productivity and result in better
quality reviews. Even though, the current implementation of
Review Bot supports only Java, the architecture is generic
to support any programming language with static analyzers
available. Section III-C2 discusses on extending Review Bot
to add support for other programming languages.

To solve the reviewer assignment problem, we propose a
reviewer recommendation algorithm as part of Review Bot.
The recommendation algorithm is based on the fact that the
most appropriate reviewers for a code review are those who
previously modified or previously reviewed the sections of
code which are included in the current review.

It may be argued that developers themselves can run the
static analysis tools in their development environment before
creating a review request or before committing the changelist
into the repository (depot). This may not be effective, since
there is no administrative control over the process. It is also
difficult to apply common configuration for static analysis
tools, when used in a decentralized manner. As mentioned in
[10], the static analysis tools may receive limited use depend-
ing on how they are integrated into the software development
process. We believe that the defects can be detected much
early in the development process if automatic static analysis
is tightly integrated with the code review process.

The main contributions of this paper are as follows:
• We propose a tool based on automatic static analysis to

reduce the human effort in code reviews.
• Through a user study, we show that tightly integrating

static analysis tools with the code review process could
improve the quality of code review.

• We propose a recommendation algorithm for solving the
reviewer assignment problem, which would ease the task
of reviewer assignment in large projects.

The remainder of this paper is structured as follows. In Sec-
tion II, we discuss briefly about Review Board, the code review
process in VMware and the various static analysis tools used in
Review Bot. The Review Bot architecture and algorithms for
automatic review generation and reviewer recommendation are
described in Section III. In Section IV, we present the results
of a user study and the experimental results of the reviewer
recommendation algorithm. The related work is discussed in
Section V and we conclude in Section VI.

II. BACKGROUND

A. Review Board

Review Board is an open-source web-based code review
tool. Automation is supported using REST API. The requests
are made to resources, which are locations containing data,
encoded in JSON or XML.

Terminology: The relationship between different Review
Board resources is shown in Fig. 1. A filediff resource provides
information on a single, self-contained raw diff file that applies
to exactly one file in a code repository. A list of filediff

Review Request

Diff

Filediff

Raw diff
Diff

Filediff

Review

Review

Review

Diff comment

Filediff Review

Diff comment

Fig. 1. Relationship between various Review Board resources

resources constitutes a diff resource and a list of diff resources
constitute a review request resource. Each diff in a review
request is revisioned, with the revision starting from 1. Each of
the code reviews of a review request, published by a reviewer
is represented by a review resource and is associated with a
single diff resource. The review resource contains a list of
diff comment resources. A diff comment resource provides
information on a single comment made on a filediff.

For example, assume that the developer’s changelist con-
tains two modified files. A review request resource is created
by uploading the raw diff files corresponding to all the files in
the changelist. The two raw diff files result in two filediff re-
sources, which constitute a diff resource with revision number
1. When a code reviewer enters some comments (represented
by diff comment resources) against the changed lines after
inspecting the changes in the diff view, a review resource is
created. The developer uploads the latest raw diff files after
addressing the comments, which creates a new set of filediff
resources and hence, a new diff resource (with revision number
2).

B. Code Review Process

In this section, we outline the code review process (Fig. 2)
followed by most of the project teams in VMware. The various
steps in the process are as follows:

1) User (submitter) generates raw diff data of all the files in
the changelist.

2) Submitter creates a new review request in Review Board.
3) Submitter enters review request description, uploads the

raw diff files, assigns reviewers and posts the review
request.

4) All the reviewers will receive an email from Review
Board notifying the review request.

5) The reviewer logs into Review Board and selects the diff
view of the filediffs in the latest diff revision.

6) The reviewer inspects the code and enters comments
against the lines displayed in the diff view using the
add comment option. Even though, Review Board allows
concurrent reviews of a single diff revision, the submitter
optionally sends emails to designate reviewers as primary
and secondary to prevent redundant reviews. The primary
reviewer begins the review first while the secondary

932

User creates a new
review request for a
changelist, assigns
reviewers and post

the request

The reviewers inspect
the code using the
diff view, enter
comments and

publish the reviews

The submitter
inspects the review
comments and makes
necessary changes in

the code

In case of conflicts,
the submitter replies

to the reviewer
comment

The submitter
updates the review
request with the
modified code

The reviewers inspect
the new changes &
post new reviews if
there are additional

comments

The reviewers
approve the review
request if they are
satisfied with the

changes

The code is checked‐
in when the reviewers
approve the review

request

Fig. 2. Code review process

reviewer starts the review only after the primary reviewer
approves the review request.

7) When the inspection is over, the reviewer publishes the
review.

8) Review Board sends an email to the submitter and all the
reviewers notifying the new review.

9) The submitter logs into Review Board and inspects the
review comments.

10) If the submitter accepts the comment, necessary changes
are made in the workspace version of the source file.
In case of conflicts, the submitter replies to reviewer’s
comment.

11) If changes are made in one or more files in the changelist,
the submitter generates new raw diff data and uploads it
in Review Board, which creates the next diff revision.

12) All the reviewers will receive an email notifying the
review request update.

13) The reviewer can view the changes made between the
current diff revision and the previous revision using the
diff viewer’s inter-diff view.

14) If there are any unaccepted comments, the reviewer
can provide more details by replying to the submitter’s
comment.

15) If the reviewer is satisfied with the changes, he/she can
do another pass or approve the review request by clicking
the approve button.

16) When the review request is approved by at least two
reviewers, the submitter can check-in the changelist into
the repository.

C. Static Analysis Tools

This section discusses the static analysis tools used in the
current implementation of Review Bot.

Checkstyle: Checkstyle [13] is a static analysis tool for
Java, which checks for coding standard violations in source
code. The various checks are represented as checkstyle mod-
ules, which can be configured to suit a particular coding style.
Checkstyle can be extended by writing user-defined checks in
Java.

PMD: PMD [14] scans Java source code and looks for
potential problems like possible bugs, dead code, suboptimal
code, overcomplicated expressions and duplicate code. The
checks are represented by rules, organized under different rule
sets; for e.g., the Code Size rule set contains rules that find
problems related to code size or complexity. PMD can be
extended by writing new rules in Java or XPath.

FindBugs: FindBugs [15], [16] works by analyzing Java
byte code, searching for predefined bug patterns. A bug pattern
is a code idiom that is often an error. There are 380 bug
patterns grouped in different categories such as Correctness,
Bad Practice, and Security [10]. FindBugs can be extended by
adding new bug detectors written in Java.

A detailed comparison of various static analysis tools for
Java can be found in [17]. The selection of these tools
was motivated by their popularity, ease of extensibility and
the problem areas covered. While Checkstyle covers coding
style related issues, PMD checks class design issues and
questionable coding practices. FindBugs, on the other hand,
detects potential bugs in the code.

III. REVIEW BOT

Review Bot is a stand-alone Java application, which can
generate automatic reviews (in Review Board) and reviewer
recommendations. When used, it will be treated as a normal
code reviewer and often reviews the code first. As part of the
review, it also recommends human reviewers appropriate for
reviewing the current request.

A. Modified Code Review Process Using Review Bot

In this section, we outline the changes required in the ex-
isting code review process (Section II-B) in order to introduce
Review Bot. The changes are as follows:

• In step 3, the submitter enters Review Bot as the reviewer
and posts the review request.

• Review Bot creates draft auto-review (Section III-C) for
the latest diff revision.

• Review Bot generates reviewer recommendations (Sec-
tion III-D) for the latest diff revision.

• Review Bot posts auto-review with the review summary
containing top-3 recommended reviewers.

• Submitter addresses the comments which he/she agrees,
drops the remaining comments and generates the next
revision of the diff.

• Review Bot posts an automatic review for the latest diff
revision to verify whether the submitter has fixed all the
accepted comments and no new issues are introduced.

• Once all the comments in automatic reviews are either
fixed or dropped, the submitter removes Review Bot and
enters the recommended reviewers in the reviewer list.

• Continue with step 4 in the current code review process.
It is also possible to perform auto-review at any time by

adding back Review Bot as the reviewer. This is recommended
especially when the submitter introduces new files or makes
a lot of changes in existing files as part of addressing manual
review comments.

933

REST‐CLIENT

JSON
(DE)SERIALIZER

DAOs

AUTO‐REVIEWER

ADMIN CLIENT

CODING STD
SECTION

ANNOTATOR

TEMP FILES

STATIC
ANALYZERS

OUTPUT
PARSERSP4‐LIB

DEPOT FILE
READER

GEMFIRE
CACHE

PERFORCE
SERVER

REVIEWBOARD
SERVER

CONFIG FILES

REVIEWER
RECOMMENDER

Fig. 3. Review Bot architecture

B. Architecture

Fig. 3 shows the Review Bot architecture. Review Bot
connects to Review Board through the Rest Client built using
Jersey library [18]. The JSON serializer/deserializer based on
Jackson [19] is responsible for the conversion between Java
objects representing Review Board resources such as Review
Request and the corresponding JSON (one of the wire formats
of Review Board) representation. The Data Access Objects
(DAOs) are used to read/write Review Board resources. Gem-
Fire [20] cache is an in-memory disk persisted cache and is
used to cache and persist data such as Review Board resources,
meta-data about raw diff files and depot files cached in the
local file system. The admin client provides a web interface
to support project specific configuration of static analysis tools,
which includes enabling or disabling checks/rules, modifying
rule settings and messages, and mapping rules to relevant
sections in coding standard.

C. Automatic Review Generation

Algorithm 1 AutoReview (id , rev , proj)
1: // id : Review Request ID, proj : project name, rev : diff

revision
2: ReviewRequest req ← getReviewRequest(id)
3: Diff diff ← req .getDiff (rev)
4: StaticAnalyzer [] sas ← getStaticAnalyzers(proj)
5: List〈SourceCodeIssue〉 issues ← { }
6:
7: for (FileDiff fileDiff : diff .getFileDiffs()) do
8: if (isFileTypeSupported(fileDiff , proj)) then
9: File f ← getMergedFile(fileDiff)

10: for (StaticAnalyzer s : sas) do
11: issues .addAll(s .check(f, proj))
12: end for
13: end if
14: end for
15:
16: Review review ← createReview(req , issues)
17: review .publish()

The auto-review procedure is outlined in Algorithm 1. In
lines 2-3, the review request and the diff to be reviewed are
read and assigned to req and diff respectively. The array
sas is initialized to static code analyzers configured for the
given project in line 4. The for loop in lines 7-14 iterates
over all the file-diffs in diff and invokes the static code
analyzers to find source code issues in each of them. The
if statement in line 8 ensures that non-supported file types for
the project are skipped. The getMergedFile function call in
line 9 checks whether the depot file and the patch file (raw diff
data) corresponding to the given filediff are already present in
the local file system based on the metadata stored in gemfire
and if not, downloads these files from respective servers (depot
file from revision control system and patch file from Review
Board server) and updates the metadata. Once the depot file
and patch file are downloaded, the patch [21] program is used
to create the merged/patched file.

Each of the static code analyzers configured for the project
is invoked with the corresponding project specific configu-
ration. The output from these static analyzers is parsed into
a common format representing the source code issues, and
finally, these issues are annotated with relevant coding standard
section numbers. These steps correspond to the check function
call in line 11. There is one output parser required per static
analyzer, which understands the format of corresponding static
analyzer output. All of the static analyzers used in the current
implementation supports XML as one of the output formats
and output parsers can be easily written. The common format
representing a source code issue has two mandatory fields:
i) the starting line number in the source code where the issue
is found and ii) the warning message. The output parsers can
also populate optional fields such as the ending line number,
the starting and ending column numbers, numerical priority in
the range 1. . .5 and rule code, if the data is available in the
static analyzer output.

The createReview function call in line 16 creates a draft
review with comments corresponding to the source code
issues. Finally, in line 17, the draft review is published.

1) Support for Static Analyzers Operating on Object Code
or Byte Code: FindBugs, unlike Checkstyle or PMD requires
Java byte code rather than source code as input. Since the
source files in the diff can have dependencies which may not
be part of the diff, it is not always possible to compile the
merged source files to generate the byte code or object code.
The auto-reviewer component can solve this by maintaining
a local copy of the project source code. When the byte code
or object code is required, the local copy is first synchronized
to the changelist in the repository to which the submitter’s
workspace is synced, then the merged files are copied and
finally, the project is built. To the best of our knowledge,
there is no direct way to obtain the changelist to which the
submitter’s workspace is synced, other than prompting the
submitter for it and including it as part of the review request.
However, for our experiments, we determined this changelist
by trial-and-error, as discussed below.

934

The filediff contains the revision number of the repository
file to which the raw diff data applies, known as the base
revision. The revision control system is queried to retrieve the
list of changelists which created the base revision and base
revision+1 of files corresponding to various filediffs. Let these
lists be CLprev & CLnext respectively and defined as:

CLprev = 〈cli, cli+1, ..., cli+m〉

CLnext = 〈clj , clj+1, ..., clj+n〉

where the changelists in CLprev and CLnext are arranged
in the chronological order of check-in time. It is clear that
the changelist to which the submitter’s workspace is synced
is always between the cli+m (inclusive) and clj (exclusive).
Once this possible list of changelist numbers is determined,
the local workspace is synced to each of these changelists
one-by-one, until the build succeeds. However, this method
will not work if all the filediffs correspond to new files.
In such cases, the possible list of changelist numbers is
determined based on the last update time of the review request.
The submitter’s workspace couldn’t have been synced to any
changelist submitted after the last update time of the review
request.

2) Extending Automatic Review: This section discusses
how to extend automatic review generation for programming
languages other than Java. Adding support for a new language
includes three steps: i) configuring one or more static analyzers
for the language; ii) writing an output parser for each of the
static analyzers; and iii) mapping each of the checks/rules
enabled in the static analyzer to the corresponding section
(if any) in the coding standard. For example, Python support
can be added by configuring auto-reviewer to use Pylint [22]
if the source language is Python. The output from Pylint
should be converted to the common format before generating
the auto-review, which requires a new output parser. The
default rule settings of Pylint may need tweaking to enforce
the desired coding standard. The mapping of the Pylint rule
codes to the corresponding coding standard sections enable the
coding standard section annotator to annotate the auto-review
comments with section numbers.

Review Bot requires the static analyzer to satisfy four
requirements: i) it should be possible to execute the static
analyzer in a sub-process; ii) the output from the static
analyzer should be able to redirect to a file, which can be
read by the output parser; iii) the output should have a well
defined structure so that a parser can be written; and iv) each
of the source code issues reported should contain a line
number indicating its position in the source code and a warning
message. Most of the popular static analysis tools in the open
domain can be called from an external program, and their
output can be redirected to a file. They also support output
reporting in multiple formats including XML.

3) Discussion on Usability: The integration of static anal-
ysis warnings in code review, as discussed above, has some
usability issues, which need to be addressed. The first issue

is related to the presentation of warnings in a user friendly
manner. Review Board has built-in support for presenting
the review comments in the side-by-side diff view. Since an
automatic review is no different from a manual review, its pre-
sentation is automatically taken care by Review Board. Refer
Section IV-A3 for screenshots of some of the diff comments
in automatic reviews, as presented by Review Board.

The second usability issue is related to the comments which
the submitter has dropped using the drop comment option
in the diff-viewer. If care is not taken, the same comment
will be reported again when the user requests auto-review for
the next diff revision. The auto-reviewer solves this by cross
checking any comment generated against similar comments
(with matching line number) in previous auto-reviews and
refrain from reporting, if it was dropped previously.

The static analyzers generate a large number of false pos-
itives [17], which poses another usability issue. Since the
auto-reviewer component of Review Bot depends on static
analyzers, the large number of false warnings may hinder its
adoption in the code review process. We try to reduce the false
positives by enabling only a subset of checks and configuring
the rule settings.

D. Reviewer Recommendation

The reviewer recommendation helps review request sub-
mitter to assign most appropriate reviewers and reduce the
time taken for review acceptance. In large software projects,
the review request submitter often assigns reviewers based on
the revision history of files in the diff. Since a file could be
edited by multiple developers, it is a difficult task to assign
appropriate reviewers if the number of files involved and the
changes within them are large. To ease the selection of review-
ers, we propose an algorithm based on line change history of
source code for generating reviewer recommendations. The
line change history of a line in a filediff contained in a review
request is the list of review requests which affected that line
in the past. The term line shouldn’t be confused with the line
in the raw diff data, rather, it refers to the line in the patched
file obtained as a result of applying a line in the raw diff data.

Formally, the line change history of a line l in a filediff fd
contained in a review request rq is defined as:

LCHfdrq
(l) = (rq1, rq2, ..., rqn),

where rq1, rq2 and rqn are review requests which contain
filediffs affecting line l. The line change history is an ordered
tuple, where the first review request in the sequence, rq1, is
the latest, rq2, the second latest and so on.

Once the line change history is found, points are assigned
to the review requests within it, which is then propagated to
associated users as user points. The computation of line change
history and points assignment is repeated for all the lines in
all the filediffs in the diff revision and the users are ranked
based on their aggregated points. Finally, the top ranked users
are recommended as reviewers for the given review request.

935

Depot revision 23 Workspace version

1 import java.util.List; 1 import java.util.List;

2 2

3 public class Foo { 3 public class Foo {
4 private int max; 4 private int maximum;

5 private boolean visible;

5 private int count; 6 private long count;

6 private double avg;

7 7

8 public Foo() { 8 public Foo() {
... ...

Fig. 4. Diff view of the filediff corresponding to Foo.java in Review Request R4

Review Request R3

Depot revision 20 Workspace version

... ...

4 private short max; 4 private int max;

... ...

Review Request R2

Depot revision 14 Workspace version

... ...

3 private short m; 4 private short max;

... ...

Review Request R1

Depot revision 10 Workspace version

... ...

3 private short m;

... ...

Fig. 5. Diff views of filediff corresponding to Foo.java in Review Requests R1, R2 and R3

1) Computing Line Change History: The filediff in a diff
revision corresponds to the raw diff data generated by running
the diff program on the workspace version of a source file.
We used the raw diff data in auto-review to generate the
user’s workspace version of the source file using the patch
program. The raw diff data is not easy for human reviewers
to comprehend. Therefore, code review tools have support for
diff viewer, which shows the depot version and workspace
version of the source file side-by-side. The line change history
computation can be best explained using the diff view of the
filediff.

Fig. 4 shows the diff view of the filediff (in review request
R4), which corresponds to depot file Foo.java with the depot
version of 23. As shown in the diff view, lines 1,2,3,7 and 8
are unchanged in the workspace version. It also shows that line
4 and line 5 were updated, line 6 was deleted and a new line
was inserted between lines 4 and 5. To trace the line change
history of line 4 in the workspace version, we need to identify

the review requests which contain a filediff (corresponding to
Foo.java) that modifies or inserts this line. Assume that the
review requests R3, R2 and R1 contain such a filediff. This
situation is illustrated in Fig. 5. In this case, the line change
history of line 4 consists of review requests R3, R2 and R1 in
that order. Formally,

LCHFoo.javaR4
(l4) = (R3, R2, R1)

It is straight forward to compute the line change history of
updated or deleted lines in the filediff. However, inserted lines
require special handling, since there are no review requests
in the past which affected such lines. We assume that, in
most of the cases, the inserted lines are related to other lines
in their proximity. This assumption is always true for lines
inserted in a method. In the case of lines corresponding to
new methods, it is observed that developers insert the method
closer to related methods. Therefore, for inserted lines, we
use the nearest existing line in the source file as a proxy for
computing the line change history.

936

2) Reviewer Ranking: The reviewer ranking algorithm is
described in Algorithm 2. The RankReviewers algorithm
takes as input the ID of the review request and the diff revision
for which reviewers are to be recommended. The algorithm
returns an array of reviewers sorted in the descending order
of user points.

Algorithm 2 RankReviewers(id , revision)
1: // id : Review Request ID, revision: Diff revision
2: ReviewRequest req ← getReviewRequest(id)
3: Diff diff ← req .getDiff (revision)
4: // Compute review request points
5: for (FileDiff fileDiff : diff .getFileDiffs()) do
6: if (isNewFile(fileDiff)) then
7: continue
8: end if
9: reqSet ← {}

10: for (Line l : fileDiff .getLines()) do
11: lch ← LCHfileDiffreq

(l)
12: α← initialPoint(fileDiff)
13: for (ReviewRequest r : lch .history()) do
14: r .points ← r .points + α
15: α← α× δ
16: reqSet ← reqSet ∪ {r}
17: end for
18: end for
19: end for
20: // Propagate review request points to user points
21: userSet ← {}
22: for (ReviewRequest r : reqSet) do
23: for (User user : r .getUsers()) do
24: user .points ← user .points + r .points
25: userSet ← userSet ∪ {user}
26: end for
27: end for
28: reviewers ← Collections . toArray(userSet)
29: Sort reviewers based on points
30: return reviewers

The lines 2-3 retrieve the review request and the diff data
within it. The for loop in lines 5-19 computes the line change
history of each of the lines in the filediffs and assigns points
to the review requests within it. The if statement in line 6
skips the rest of the loop for filediffs corresponding to new
files, since there is no way to compute the line change history
of any lines in it. The set of review requests which affected
various lines in the current filediff is initialized in line 9. The
for loop in lines 10-18 iterates over each of the lines in the
current filediff, computes its line change history and assigns
points to the review requests in the line change history before
adding them to reqSet . In line 11, the line change history of
the current line l is computed and assigned to lch . The function
initialPoint invoked in line 12 returns the initial point that is
to be assigned to the first review request in lch . The function
may return different initial points for different types of files.
For e.g., the .java files in the diff can be prioritized above .xml

files by returning a higher initial point for .java filediffs as
compared to .xml filediffs. The for loop in lines 13-17 iterates
over each of the review requests in the line change history, in
the most recently affected to the least recently affected order
and assigns points to them. In line 15, the point to be assigned
to the next review request is reduced by a constant factor of
δ, where 0 < δ < 1. This will ensure that the most recent
review requests which affected the line are prioritized above
least recent ones.

In lines 21-27, the points assigned to the review requests
in reqSet are propagated to user points. The users in this
context refer to the submitter and the reviewers. In line 21,
the set of users, userSet is initialized. The for loop in lines
22-27 iterates over each of the review requests in reqSet and
assigns points to the corresponding users before adding them
to userSet . Finally, in lines 28-30, the array of recommended
reviewers (reviewers) is initialized using userSet , then sorted
in the descending order of user points and returned.

3) Discussion: The RankReviewers algorithm discussed
above is meant to be a replacement for the manual reviewer
assignment based on file change history. As in the case of
manual reviewer assignment, the RankReviewers algorithm
cannot be applied to a review request with new files. At the
time of writing this paper, we were working on extending
RankReviewers to handle review requests with new files using
syntactic similarity.

IV. EXPERIMENTS

A. Automatic Review

To study the feasibility of Review Bot in the code review
process, auto-reviews were generated for a set of already
approved review requests and feedback was requested from
a group of developers for a subset of comments in the auto-
reviews.

1) Configuration: We selected 34 review requests submit-
ted in the initial one-month period of an ongoing project
for experiments. Since the review requests selected were
submitted in the initial period of the project, the diff size
was fairly high with an average of 20 filediffs per diff. The
Java coding standard in VMware, project specific rules and
best practices were used to configure Checkstyle & PMD
rules. In the case of similar checks between Checkstyle and
PMD, Checkstyle rules were selected. A total of 103 checks
were enabled for Checkstyle and 113 for PMD. FindBugs was
configured to run with the default rule set, which contains
around 380 checks.

Checkstyle, unlike PMD and FindBugs outputs all source
code issues with the same priority. Users should configure the
priority of each of the Checkstyle rules/modules. Moreover,
it uses severity levels such as error, warn, etc., instead of
numerical priority levels used by PMD and FindBugs. For each
of the Checkstyle modules enabled for the experiments, we
manually configured its severity level and mapped the severity
levels to numerical priority in the output parser.

937

TABLE I
AVERAGE COMMENTS PER AUTO-REVIEW [P1 = PRIORITY 1 (HIGHEST PRIORITY), P5 = PRIORITY 5 (LOWEST PRIORITY)]

Static Analyzer Avg. comments Avg. P1 Avg. P2 Avg. P3 Avg. P4 Avg. P5

Checkstyle 157.94 8.47 0.00 47.85 101.62 0.00
FindBugs 0.50 0.25 0.25 0.00 0.00 0.00
PMD 25.44 2.94 0.06 22.44 0.00 0.00

Sum 183.88 11.66 0.31 70.29 101.62 0.00

0

100

200

300

400

500

600

700

800

900

PMD

Checkstyle

134

869

117

818

17
51

C

o

m

m

e

n

t

s

Reported

Accepted

Dropped

0.00

2.00

4.00

6.00

8.00

10.00

PMD

Checkstyle

%

R

e

p

o

r

t

e

d

Unclear
comment text

Increase
priority

Decrease
priority

Comment in
wrong line
number

Duplicate
comment

Fig. 6. User feedback on auto-reviews

2) Results: There were 6252 comments in total across 34
auto-reviews. The average comments per auto-review is listed
in Table I, categorized based on the priority. Majority of the
comments are Checkstyle issues with priority 3 and 4, which
indicate coding standard violations and style related issues
such as missing javadoc, wrong indentation, etc. The FindBugs
issues are comparatively less; this could be attributed to the
extensive unit testing carried out as part of the development
process.

To study the feasibility of Review Bot in the code review
process, a group of 7 developers working in the project
under study was requested to analyze around 1000 auto-review
comments and provide feedback on the following aspects:

• Whether the comment is acceptable or should it be
dropped?

• Whether the comment text is clear?
• Whether the comment is a duplicate?
• Whether the priority assigned is high or low?
The developers were instructed to provide their feedback

as replies to review comments using keywords. For example,
if the comment text is unclear, they were asked to reply to
the comment using the keyword “message”. The results of
the user study are shown in Fig. 6. We omit FindBugs in the
results since the number of comments is too small to draw
any conclusion.

As shown in Fig. 6, the developers agreed to fix more than
94% of Checkstyle comments. This might be an indication
that they missed these issues before due to the lack of un-
derstanding of relevant coding standard sections or style. The
fact that they agreed to fix more than 93% of all the comments
reported (for all the static analyzers) is a positive indication

of Review Bot’s feasibility in the code review process. A
manual inspection of the comments dropped revealed that
the majority are style related issues without coding standard
section numbers. However, there were exceptional cases where
the developers consistently dropped certain issues with coding
standard section numbers. One such case is the check for
restricting the number of return statements in a method.
This feedback is valuable for making appropriate changes in
the coding standard.

The developers had concerns about only 14.71% of all
the accepted comments, which indicates the high-quality of
auto-review comments. Out of this 14.71%, 12.8% is due to
improper priority values. This is not surprising since the static
analyzers use pre-configured priority values for comments
while the human reviewers give priority values based on the
context. It is a future work to correct the priority values based
on user feedback.

3) Automatic Review Screenshots: Fig. 7 illustrates screen-
shots of some of the comments in automatic reviews generated
by Review Bot in Review Board.

B. Reviewer Recommendation

In this section, we evaluate the accuracy of the reviewer
recommendation algorithm in Review Bot against another
algorithm called RevHistRECO (Algorithm 3), which rec-
ommends reviewers based on revision history of files in the
diff. The RevHistRECO algorithm is motivated by the current
manual reviewer assignment.

1) RevHistRECO Algorithm: The RevHistRECO algorithm
is given in Algorithm 3. As in Algorithm 2, lines 2-3 retrieves
the diff for which reviewers are to be recommended. In lines 5-

938

258 } catch (Exception e) {

Catching 'Exception' is not allowed

147 fileFullName.lastIndexOf('.');

return value of String.lastIndexOf(int) ignored

544 hdd.setCapacityInKB9sizeInMBb*b1024);

510245bisbabmagicbnumber.b
Ref: Section 5.9.1

316 vmDiskSettings.setUnitNumber(currentIdeUnitNumber8=8

Inner8assignments8should8be8avoided.8
Ref: Section 5.8.3

Fig. 7. Screenshots of comments in automatic reviews

Algorithm 3 RevHistRECO(id , revision)
1: // id : Review Request ID, revision: Diff revision
2: ReviewRequest req ← getReviewRequest(id)
3: Diff diff ← req .getDiff (revision)
4: // Find all the submitted changelists which created the base

revision of files in this diff and assign points
5: clList ← 〈 〉
6: for (FileDiff fileDiff : diff .getFileDiffs()) do
7: if (isNewFile(fileDiff)) then
8: continue
9: end if

10: cl ← findSubmittedChangelist(fileDiff)
11: cl .points ← initialPoint(fileDiff)
12: clList .add(cl)
13: end for
14: // Find users related to the changelists and assign points
15: userList ← 〈 〉
16: for (Changelist cl : clList) do
17: for (User user : cl .users()) do
18: user .points ← cl .points
19: userList .add(user)
20: end for
21: end for
22: userSet ← consolidate(userList)
23: reviewers ← Collections . toArray(userSet)
24: Sort reviewers based on points
25: return reviewers

13, the list of submitted changelists in the repository (clList)
which created the base revision of files in the given diff is
computed. The findSubmittedChangelist(fileDiff) function
call in line 10 queries the revision control system to read the
changelist which created the base revision of the source file
corresponding to fileDiff . In line 11, the retrieved changelist
is assigned an initial point based on the source file type, as
discussed in Section III-D2.

In lines 15-21, the list of users associated with clList is
computed and points are assigned. The users associated with a
changelist include the changelist submitter and developers who
approved the changelist. The userList may contain duplicate
entries if a particular user is associated with more than one
changelist. In line 22, the consolidate function finds out such
entries, aggregates the points and returns a set of users. Finally,

in lines 23, 24 and 25, the userSet is converted to an array,
then sorted based on the aggregated user points and returned.

2) Recommendation Accuracy: Even though there is no
company-wide policy in choosing reviewers, most of projects
in VMware require that at least one of reviewers should be
an expert in the areas of the code touched in a diff. Based
on this, we consider the top-k recommendation for an already
approved review request to be correct, if at least one of the
top-k recommended reviewers was an actual reviewer for that
review request. For a dataset with N approved review requests,
the top-k recommendation accuracy is defined as:

accuracy(k) =
Number of correct top-k recommendations

N

The recommendation algorithms were evaluated using two
datasets, namely Proj1 and Proj2. Each of these datasets con-
sists of approved review requests corresponding to a particular
project. The Proj1 dataset is a relatively large dataset with
a total size of 7035 review requests, whereas Proj2 consists
of 1676 review requests. The number of developers who had
either submitted or reviewed a review request included in the
dataset is 204 for Proj1 and 40 for Proj2. The evaluation of
Review Bot consists of iterating over the dataset in chronolog-
ical order and finding recommendations based on line change
history computed using all the previously submitted review
requests in the project. In the case of RevHistRECO, the
review requests can be considered in any order since it is not
based on historical review request data.

Both the algorithms were run with initialPoint = 1.0 for
source files (.java, .c, etc.) and 0.75 for resource files (.xml,
.properties, etc.). The value of δ was set to 2/3 for Review Bot.
Table II lists the top-k recommendation accuracy of Review
Bot and RevHistRECO for k = 1 to k = 5. As shown in the
table, Review Bot’s top-1 recommendation is accurate for both
datasets in 60% of the cases. In the case of RevHistRECO,
the top-1 accuracy is only 34.15% and 47.83%, respectively,
for Proj1 and Proj2. For the relatively larger dataset Proj1,
Review Bot could achieve an accuracy of 80.85% for k = 5,
whereas the corresponding accuracy of RevHistRECO is only
46.34%. In the case of the smaller dataset Proj2, the top-5
accuracy of Review Bot is an impressive 92.31% compared to
the corresponding RevHistRECO’s accuracy of 60.39%. It is
quite evident from these results that the reviewer recommen-
dation based on line change history is far superior than the
comparable method based on file revision history.

939

TABLE II
REVIEWER RECOMMENDATION ACCURACY

Dataset Algorithm
Accuracy (%)

k = 1 k = 2 k = 3 k = 4 k = 5

Proj1
Review Bot 61.17 72.87 77.13 79.26 80.85
RevHistRECO 34.15 41.46 43.90 45.12 46.34

Proj2
Review Bot 59.92 79.35 86.23 91.50 92.31
RevHistRECO 47.83 58.70 59.42 60.14 60.39

V. RELATED WORK

Sonar [23] is an open-source software which uses various
static analysis tools for reporting source code issues. It can be
integrated with popular build tools and continuous integration
systems. It may be argued that the users could run Sonar
and include the report generated in the review request. As
mentioned in [10], the static analysis tools may receive limited
use depending on how they are integrated into the software
development process. We believe that the tight integration of
automatic static analysis with code review, like we proposed,
would be more beneficial than integrating them with the build
process, since the defects can be detected and fixed much early
in the development cycle.

In [24], the authors address the problem of assigning
developers to bug reports. This is different from the reviewer
assignment problem discussed here because review requests
are not always meant for bug fixes.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a tool called Review Bot based on static
analysis tools to reduce the human effort in peer code reviews.
Through a user study, we have shown that Review Bot can im-
prove the review quality by finding source code issues, which
need to be addressed, but could be missed during reviewer
inspection. We also proposed a reviewer recommendation
algorithm to ease the task of finding appropriate reviewers
in a large project. Inclusion of a learning algorithm to reduce
false positive comments and to correct priority values would
be an interesting future work.

ACKNOWLEDGMENT

The author would like to thank all participants of the user
study. He would also like to thank the anonymous reviewers
for their valuable feedback.

REFERENCES

[1] I. Sommerville, Software Engineering. Addison Wesley, 2010.
[2] D. Huizinga and A. Kolawa, Automated Defect Prevention: Best Prac-

tices in Software Management. Wiley-IEEE Computer Society Press,
2007.

[3] S. C. McConnell, Code Complete: A Practical Handbook of Software
Construction. Microsoft Press, 2004.

[4] K. Wiegers, Peer Reviews in Software: A Practical Guide. Addison-
Wesley Professional, 2001.

[5] B. Meyer, “Design and code reviews in the age of the internet,”
Commun. ACM, vol. 51, pp. 66–71, Sep. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1378727.1378744

[6] P. C. Rigby and D. M. German, “A preliminary examination of code
review processes in open source projects,” University of Victoria, Tech.
Rep. DCS-305-IR, January 2006.

[7] G. McGraw, “Automated code review tools for security,” Computer,
vol. 41, pp. 108–111, December 2008. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1495784.1495852

[8] A. Reddy et al., “Java coding style guide,” Sun MicroSystems, 2000.
[9] G. O’Regan, Introduction to Software Process Improvement. Springer,

2011.
[10] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings

of the 19th international symposium on Software testing and analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 241–252.
[Online]. Available: http://doi.acm.org/10.1145/1831708.1831738

[11] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” in Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006, ser. EuroSys ’06.
New York, NY, USA: ACM, 2006, pp. 73–85. [Online]. Available:
http://doi.acm.org/10.1145/1217935.1217943

[12] “Review Board,” http://www.reviewboard.org/, [Online; accessed 21-
Oct-2012].

[13] “Checkstyle,” http://checkstyle.sourceforge.net/, [Online; accessed 21-
Oct-2012].

[14] “PMD,” http://pmd.sourceforge.net/, [Online; accessed 21-Oct-2012].
[15] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN

Not., vol. 39, pp. 92–106, December 2004. [Online]. Available:
http://doi.acm.org/10.1145/1052883.1052895

[16] “FindBugs,” http://findbugs.sourceforge.net, [Online; accessed 21-Oct-
2012].

[17] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in Proceedings of the 15th International
Symposium on Software Reliability Engineering. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 245–256. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1032654.1033833

[18] “Project Jersey,” http://jersey.java.net/, 2008, [Online; accessed 21-Oct-
2012].

[19] “Jackson,” http://jackson.codehaus.org/, 2009, [Online; accessed 21-Oct-
2012].

[20] “GemFire,” http://www.gemstone.com/, [Online; accessed 21-Oct-2012].
[21] “GNU patch,” www.gnu.org/s/patch/, 2009, [Online; accessed 21-Oct-

2012].
[22] “Pylint - code analysis for Python,” http://www.pylint.org/, [Online;

accessed 17-Feb-2013].
[23] “Sonar,” http://www.sonarsource.org/, [Online; accessed 21-Oct-2012].
[24] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this

bug?” in Proceedings of the 28th international conference on Software
engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–
370. [Online]. Available: http://doi.acm.org/10.1145/1134285.1134336

940

View publication statsView publication stats

