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Abstract—Searching code samples in a code repository is an
important part of program comprehension. Most of the existing
tools for code search support syntactic element search and
regular expression pattern search. However, they are text-based
and hence cannot handle queries which are syntactic patterns.
The proposed solutions for querying syntactic patterns using
specialized query languages present a steep learning curve for
users. The querying would be more user-friendly if the syntactic
pattern can be formulated in the underlying programming
language (as a sample code snippet) instead of a specialized query
language. In this paper, we propose a solution for the query by
example problem using Abstract Syntax Tree (AST) structural
similarity match. The query snippet is converted to an AST, then
its subtrees are compared against AST subtrees of source files
in the repository and the similarity values of matching subtrees
are aggregated to arrive at a relevance score for each of the
source files. To scale this approach to large code repositories,
we use locality-sensitive hash functions and numerical vector
approximation of trees. Our experimental evaluation involves
running control queries against a real project. The results show
that our algorithm can achieve high precision (0.73) and recall
(0.81) and scale to large code repositories without compromising
quality.

I. INTRODUCTION

Searching code samples in a code repository is an important

part of program comprehension. Developers often search code

samples during refactoring efforts, fixing bugs, adding new

features, or learning the usage of a particular API. The

code search is typically performed using an IDE such as

Eclipse [1] (for small local repositories) or using the search

feature in online source code browsers (for large repositories).

OpenGrok [2], Krugle [3], Open Hub [4], and Grepcode [5]

are some of the popular code search engines. OpenGrok can

be downloaded and customized for custom code repositories.

The remaining ones are hosted on the Internet and search only

in a fixed set of open source projects.

The search tools mentioned above support searching for

language specific syntactic elements. For example, using

OpenGrok, developers can search for class definitions using

its symbol search. It is also possible to find all references

to a symbol using these tools. Tools such as Eclipse also

support pattern matching using regular expressions. These

tools are basically text-based search engines with options

for searching certain syntactic elements in a language. For

example, in OpenGrok, a given source file is processed by

language specific analyzers to create a Lucene document,

which is finally indexed [6].

Most of the common search tasks can be performed us-

ing text-based code search engines. However, they are not

suitable for queries which are syntactic patterns. Panchenko

et al. observed that 36% of all queries in a code search

engine are syntactic patterns [7]. As an example, consider the

case where a developer is interested in understanding how

IOException thrown by the File.createTempFile [8] API

is handled in existing code in a Java code repository. This

cannot be searched precisely using “File.createTempFile”

in a text-based search engine because the enclosing method

containing this method invocation may be declared as throwing

IOException. In such a case, there will not be any catch block

handling the exception. It is also not effective to search for

the symbol “IOException” since it could be thrown by many

APIs. The situation becomes worse if the method involved is

an instance method such as delete in the File class, in which

case the user query might include instance variables (e.g., File

f; f.delete();). The method name might be a common

identifier and the existing code may not use the same identifier

for the method invocation as given in the query. Cases like

these can be handled in a user-friendly manner if the query

can be expressed as a code snippet in the surface programming

language and the search engine returns source files containing

syntactic structures similar to that of the query. For example,

the search intent in the first case may be expressed using the

following code snippet:

try {

File file = File.createTempFile("foo", "bar");

} catch (IOException e) { }

Intuitively, a file can be considered relevant to a given query

snippet if it contains syntactic patterns or structures similar

to that of the query. A file can also be considered relevant

if it contains code that is semantically related to the query

snippet. In this paper, we do not consider semantic similarity

and define the relevance score based on syntactic structural

similarity between the files and the query snippet. Since ASTs

capture the syntactic structure, we use AST similarity (tree edit

distance; Section II-B) to compute the relevance score. There

are two challenges:

1) It is often the case that only a small subtree of the AST of

a source file (source AST) matches the AST of the query

snippet (query AST). This implies that the similarity

value obtained by directly applying a tree similarity

algorithm may not yield desirable results. For example,
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Block
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SimpleType
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SimpleName
{4=1, 9=1}

SimpleName
{4=1, 18=1}

IllegalArgumentException
{18=1}

String
{9=1}

Fig. 1. AST subtree with 1-level characteristic vectors

the tree edit distance might indicate a low similarity (large

edit distance value) even though the query AST matches

a small subtree of a very large source AST.

2) There may not exist a single subtree of the source AST

that matches the entire query AST; multiple subtrees that

may not share a common parent might match different

subtrees of the query AST.

To address these challenges, we consider all the subtrees

of the query AST with size above a certain threshold and

compute similarity between these subtrees and all the subtrees

of a source AST. Since the number of subtrees of a source AST

can be prohibitively large, we consider only those subtrees of

a source AST which has the same root node type as that of

the query AST subtree against which it is compared. Finally,

a relevance score is computed for each of the source files

having one or more matching AST subtrees based on AST

subtree similarity values. Since tree edit distance computation

is expensive and the number of ASTs can be prohibitively

large for large-scale code repositories, we adopt numerical

vector approximation of ASTs and use Euclidean distance to

approximate tree similarity. To scale the similarity computa-

tion to millions of vectors, we use two locality-sensitive hash

functions to implement a space and time efficient k-nearest

neighbor search to find vectors similar to a query vector.

The rest of this paper is organized as follows. In Section II,

we discuss some of the background necessary to understand

the problem and our solution. The query by example problem

is formally defined along with an overview of our solution

in Section III-A. The details of the algorithm are given in

Section III-B followed by the discussion on scalability in

Section III-C. In Section IV, we evaluate our algorithm. The

related work is discussed in Section V and we conclude in

Section VI.

II. BACKGROUND

A. Abstract Syntax Tree

Abstract Syntax Tree (AST) is a hierarchical representation

of the syntactic structure of source code. In comparison

with parse tree, AST does not contain syntactic elements

which are not required for program analysis in later stages of

compilation. For example, an AST generated for a program in

Java will not contain nodes for array subscripts or parentheses

because they can be inferred from the hierarchical relationship

between other nodes.

Figure 1 shows the AST generated for the if-block (lines

24-26) of the following Java code snippet using the Eclipse

JDT Core [9] parser.

23 if (valRefs == null) {

24 String message = ResourceBundleUtil

25 .getMessage("ValUtil.1");

26 throw new IllegalArgumentException(message);

27 }

The leaf nodes represented by dotted ellipses in Figure 1

do not correspond to leaf nodes in the original AST produced

by the JDT core parser. In the original AST, these nodes

represent node attribute values. For example, the child node of

StringLiteral in Figure 1 represents the value of its attribute

named ESCAPED_VALUE in the original AST. In this work, the

original AST is modified to add such attribute values as leaf

nodes because of the reasons outlined in Section III-A.

B. Tree Edit Distance and Approximation

The tree edit distance [10] is a commonly used tree

similarity measure based on the tree edit operations: insert,

delete, and relabel. In insert operation, a new node is inserted

and in delete operation, an existing node is removed. The

relabel or substitute operation replaces a node label with

another label. Given a cost ci associated with each of the

edit operations, we can define the cost of an edit operation

sequence E = 〈e1, e2, . . . , en〉 as the sum of the cost of all

edit operations in the sequence. If the set of all edit operation

sequences which can transform a tree T1 into another tree

T2 is SE , then the tree edit distance between T1 and T2

(ted(T1,T2)) is defined as the minimum of all edit operation

sequence cost for each sequence in SE , i.e.,

ted(T1,T2) = min{Cost(E) : E ∈ SE} (1)

The tree edit distance algorithms are computationally expen-

sive and therefore cannot be used for comparing larger trees

such as ASTs. For example, the algorithm in [11] has a worst

case time complexity of O(|T1|
2|T2|

2), where |T | denotes the

tree size.
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Yang et al.[12] approximated tree structural data with n-

dimensional vectors (characteristic vectors) and proved that

L1-norm [13] between two vectors is a lower bound of the

tree edit distance between the corresponding trees. Based

on the following result, Jiang et al. [14] approximated tree

edit distance with Euclidean distance of the corresponding

characteristic vectors.

Corollary 3.8 in [14] “For any trees T1 and T2 with the

edit distance ted(T1,T2) = k, the Euclidean distance

between the corresponding q-level characteristic vectors,

eud(ṽq(T1), ṽq(T2)), is no more than (4q − 3)k and no

less than the square root of the L1-norm”, i.e.,

√

L1-norm(ṽq(T1), ṽq(T2)) ≤ eud(ṽq(T1), ṽq(T2))

≤ (4q − 3)k.
(2)

where a q-level characteristic vector is defined as

Definition 3.5, 3.6 in [14] “A q-level atomic pattern is a

complete binary tree of height q. Given a label set

L, including the empty label ǫ, there are at most

|L|2q−1 distinct q-level atomic patterns. Given a tree T ,

its q-level characteristic vector (denoted by ~vq(T )) is

〈b1, b2, . . . , b|L|2q−1〉, where bi is the number of occur-

rences of the i-th q-level atomic pattern in T .”

If q=1, the Euclidean distance between 1-level characteristic

vectors corresponding to two trees can be used as a lower

bound of the tree edit distance between them. Since a 1-

level atomic pattern is just a single node, the set of distinct

1-level atomic patterns corresponding to a label set L is a

set of |L| nodes– one node for each label. Therefore, a 1-

level characteristic vector of a tree with node labels from L
is a L-dimensional vector, where each dimension represents a

label and its weight equal to the frequency of occurrence of

that label in the tree. If we assume that two trees T1 and T2

are similar if their tree edit distance is less than a threshold

η, then they are dissimilar if the Euclidean distance between

their 1-level characteristic vectors is greater than η. If the

Euclidean distance is less than η, then it is probable that their

tree distance is also less than η and hence can be considered

similar.

Based on the above results, we can represent an AST or a

subtree of an AST with a 1-level characteristic vector and use

Euclidean distance to approximate AST similarity. To generate

the 1-level characteristic vector of an AST subtree rooted at

node n, we recursively generate the characteristic vectors of

subtrees rooted at n’s children, add them together and add

1 to the dimension represented by n’s label. Figure 1 shows

an AST subtree with 1-level characteristic vectors, where each

dimension with a non-zero weight is represented in the format

Dimid = frequency. For example, String is represented by

dimension 9, and therefore, the characteristic vector of the root

node (Block) has a value 3 for dimension 9.

III. QUERY BY EXAMPLE (QBE)

We formally define the QBE problem as follows:

Given a source code repository R with n files and a

query snippet q, return the top-k files in R matching

the query q, ordered by relevance.

In the next subsection, we give an overview of our solution

using an example. The details of the solution are discussed in

the subsection following that.

A. Overview

As an example of our query evaluation outlined in Section I,

consider the source AST corresponding to the following Java

code snippet in Figure 2(a).

29 try {

30 File f = File.createTempFile("bar", ".txt");

31 System.out.println(f.getAbsolutePath());

32 f.delete();

33 } catch (IOException e) {

34 logger.error(e.getMessage());

35 e.printStackTrace();

36 }

Let the query snippet be

1 try {

2 File file = File.createTempFile(null, null);

3 } catch (IOException e) {

4 }

with the corresponding query AST in Figure 2(b). Due to space

constraints, the AST node labels are replaced by 1-3 letter

abbreviations (Table I). The nodes are numbered starting from

1 in depth-first order.

The try..catch statement in lines 29-36 is represented by

node 1 in Figure 2(a) with the left child, node 2, representing

the try block in lines 30-32 and the right child, node 3, rep-

resenting the catch clause in lines 33-35. The child nodes of

node 2: node 3, node 19, and node 33 represent the statements

in lines 30, 31, and 32 respectively. The exception declaration

in line 33 and the catch block in lines 34-35 are represented by

nodes 40 and 46 respectively. In Figure 2(b), node 3 represents

the statement in line 2 and node 18 represents the exception

declaration in line 3.

These ASTs are modified versions of ASTs generated using

the Eclipse JDT core parser (ASTParser). The advantage of

the Eclipse JDT core parser is that it can generate valid ASTs

even when there are unresolved dependencies. As mentioned in

Section II-A, the leaf nodes drawn in dotted circles represent

attribute values in the original AST. For example, the type

names, identifier names, operators, and string literals are

attributes in the original AST and are represented as leaf nodes

in Figures 2(a) and 2(b) due to the following reasons. It is

hard to imagine query snippets without type (class, interface,

primitive type) names and method (function) invocations. If

we ignore the above attributes during AST subtree similarity

computation, then the query result will not be precise. If

we retain these as attributes in the AST, then our structural

matching needs to handle two types of nodes (those with

and without attributes). By representing these information

as leaf nodes, we can simplify the tree structural similarity
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(b) Query AST

Fig. 2. Query evaluation

TABLE I
AST NODE LABEL ABBREVIATIONS USED IN FIGURE 2

T: TryStatement SN: SimpleName C: CatchClause VS: VariableDeclarationStatement

B: Block ST: SimpleType M: MethodInvocation SD: SingleVariableDeclaration

ES: ExpressionStatement QN: QualifiedName S: StringLiteral VF: VariableDeclarationFragment

Fi: File cTF: createTempFile ba: bar te: .txt

Sy: System PS: PrintStream pr: println gAP: getAbsolutePath

de: delete IE: IOException Log: Logger er: error

gM: getMessage pST: printStackTrace N: NullLiteral

computation without trading off query precision. We also

replaced variable identifier labels with the corresponding type

names. For example, we renamed the labels of node 9 and

node 30 in Figure 2(a) from “file” (identifier) to “File”

(type). This change will ensure that our query matching is

insensitive to identifier names. It also means that it is not

possible to search for specific identifiers as in text-based code

search engines. For example, the query File f; f.delete();

might return results containing File g; g.delete();.

As discussed in Section I, our query evaluation considers all

the subtrees of the query AST with a minimum size (say 3).

Let us assume that we have a tree similarity function which

marks a subtree STs of a source AST as highly similar to

a subtree STq of the query AST, if the exact matching tree

patterns in both the trees contribute to 70% or more to their

respective tree sizes. If the percentage of nodes covered by

exact matching tree patterns in STs is ps and STq is pq , then

STs is marked as highly similar to STq only if ps, pq ≥ 70%
and the similarity value is defined as min(ps, pq). It should

be noted that we use this similarity function instead of tree

edit distance (similarity function used in our algorithm) only

to simplify the discussion.

The similarity evaluation based on this approach is illus-

trated in Figure 2. The matching tree patterns in Figures 2(a)

and 2(b) are drawn with similar color and fill-pattern. As we

can see, the subtree rooted at node 10 in the query AST

(Figure 2(b)) does not have a similar subtree in the source

AST (Figure 2(a)). There is a tree pattern in the subtree rooted

at node 10 in the source AST which matches 70% or more

of the query AST subtree, but the matching tree pattern in

the source AST subtree does not contribute 70% or more to

its size. In the case of a matching subtree subsuming another

matching subtree of the source AST, we do not discard the

smaller matching subtree since it can have a high similarity

value as compared to the larger subtree which could increase

the relevance of the source file. For example, the subtree rooted

at node 4 in the query AST is similar to the subtree rooted

at node 4 in the source AST which is subsumed by another

matching subtree in the source AST (node 3). Finally, we

aggregate the similarity values of all matching subtrees to

compute the relevance score. There are total 5 matching source

AST subtrees in this example: subtrees rooted at nodes 3, 4,

28, 34, and 40.

Since a tree similarity function such as the one discussed

above or tree edit distance is computationally expensive for

large trees, we use characteristic vector approximation of

ASTs and use Euclidean distance to approximate their tree

edit distance based similarity (see Section II-B). If we consider

two AST subtrees to be similar if their tree edit distance is no

greater than a configurable threshold (η), then the problem of

finding all source AST subtrees similar to a given query AST

subtree reduces to finding all source vectors (corresponding

to source AST subtrees) which are at a Euclidean distance of

at most η from the query vector (corresponding to the query

AST subtree). In the context of querying, we are interested

only in k most similar characteristic vectors. Therefore, we

can further reduce the problem to k-nearest neighbor search

in a dataset of characteristic vectors (corresponding to source

AST subtrees) based on Euclidean distance.
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B. Details

1) Algorithm: The search database creation involves iterat-

ing over each of the source files in the repository, generating

the AST, generating the characteristic vector of each of the

AST subtrees with size no less than a configurable threshold

(λ) and adding the vectors to k-nearest neighbor (k-NN) search

module. The k-NN search module, when given a characteristic

vector and an integer k as input, returns the top-k most similar

(as per Euclidean distance) vectors. If exact nearest neighbors

are required and if the repository is small, then the k-NN

search module can be implemented using a hash table with

the AST node type as the key and the value set to the list of

characteristic vectors of AST subtrees whose root node type

matches the key. The k-NN search in this case is a linear scan

over a list of vectors. We call this method of k-NN search

as linear k-NN search. In our implementation, we included

a parameter η which is the max Euclidean distance allowed,

above which a vector is not considered similar to the input

vector and hence not included in the k-NN result.

The QUERY-BY-EXAMPLE algorithm is shown in Figure 3.

In lines 1-2, the AST parser type is determined based on

the source language of the query snippet and the query AST

is generated. The GENERATE-VECTORS (line 3) generates

characteristic vector of each of the subtrees and associates

meta-data such as source file path, size of the subtree, and

start and end line numbers in the source code covered by the

corresponding subtree. The for loop in line 4 finds the k-

nearest neighbors (with k set to configurable value K; line

6) of each of the query AST vectors with the corresponding

subtree size greater than or equal to a configurable threshold

(λ) and adds the vectors and the similarity values in the k-NN

result to a hash table keyed by the source file path. We used

the following equation to compute similarity from Euclidean

distance:

sim(~v1, ~v2) =
1

1 + eud(~v1, ~v2)
(3)

The matching vectors and the similarity values are stored

in the query match record M , which is retrieved in line 8.

Since a vector (subtree in a source AST) matching a larger

query subtree is more useful than a vector matching a smaller

subtree, we store a weighted similarity value (line 9), where

the weight is the size of the query subtree for which the vector

is a match. The ADD-VECTOR method in line 10 adds the

vector and its similarity value to the query match record. There

could be multiple similarity values associated with the same

vector, since the vector could be a match for many subtrees

in the query AST. At the end of this step, we have a list of

vectors (subtrees) of various source ASTs which are similar

to various vectors of the query AST. Next, we will compute a

relevance score for each of the source files using the similarity

values of matching vectors.

The for loop in line 11 iterates over each of the source files

which has vectors matching the query vectors and computes

its relevance score. The for loop in line 13 iterates over

each of the matching vectors and uses its similarity values

QUERY-BY-EXAMPLE(querySnippet)

1 parser = RESOLVE-AST-PARSER(querySnippet)
2 ast = parser .PARSE(querySnippet)
3 V = GENERATE-VECTORS(ast)
4 for each vector v ∈ V
5 if v . treeSize ≥ λ
6 knn = KNN-SEARCH(v, K, η)
7 for each (vector , sim) ∈ knn

8 M = HASH-GET(vector .sourceFile)
9 weightedSim = sim × v . treeSize

10 ADD-VECTOR(M, vector ,weightedSim)
11 for each entry (sourceFile,M) ∈ HASH-ENTRIES()
12 M .score = 0
13 for each vector v ∈ M .vectors
14 ADD-LINE-INTERVAL(M, v)
15 for each sim ∈ v .similarityValues

16 M .score += sim

17 REMOVE-REDUNDANT-LINE-INTERVALS(M)
18 return SORT-SCORES(HASH-ENTRIES())

Fig. 3. Algorithm - Query by Example

to update the relevance score (line 15). The ADD-LINE-

INTERVAL method in line 14 adds the line number interval

(needed for reporting) covered by the matching vector to

the query match record. Since there could be overlapping

line number intervals, we remove redundant line intervals in

line 17. Finally, the query match records are sorted based on

relevance score and returned in line 18.

2) Time and Space Complexity: In this subsection, we

analyze the time and space complexity of the QUERY-BY-

EXAMPLE algorithm in Figure 3. For a repository with L lines

of code, there are approximately n = 10×L AST nodes [15].

In a k-ary tree with n nodes, the number of non-leaf nodes

is O(n); therefore the number of 1-level characteristic vectors

in the search database is O(n). It is reasonable to assume that

the query snippet is often small and the number of lines is a

constant. This implies that the number of nodes in the query

AST is a constant Q.

Lines 1-3 are constant time operations. Assuming that KNN-

SEARCH is linear k-NN search, the time complexity of line

6 is O(n × d), where O(d) is the cost of computing eud
for d-dimensional vectors. The maximum number of matching

vectors after k-NN search for all query vectors is Q × K.

Therefore, the cost of the for loop in line 4 is O(Q × (K +
(n× d)). In the worst case, each of these vectors corresponds

to a unique source file and hence the for loop in line 11 takes

O(Q×K) time. Finally, SORT-SCORES in line 18 takes O(Q×
K × log(Q× K)). Therefore, the total time complexity is

T = O(Q× (K + (n× d)) +O(Q× K)+

O(Q× K × log(Q× K)) =

O(n× d) = O(L× d)

(4)
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For space complexity, we need to consider only the linear

k-NN search method. Assuming a hash table implementation

where the elements in a bucket are stored in a list, the space

complexity is

S = O(n× (κ+ ρ)) ≈ O(n) (5)

where κ is the size of a characteristic vector and ρ is the size

of a memory address. Here we assume that the hash table

stores only references to characteristic vectors.

C. Scaling to Large Code Repositories

The time complexity discussed in Section III-B2 implies

that the QUERY-BY-EXAMPLE algorithm is useful only for

small code repositories. Today’s code repositories contain

projects with lines of code (L in Equation 4) in millions.

The main bottleneck in our algorithm is the expensive linear

k-NN search. Locality-sensitive hashing (LSH) is a widely

used technique to solve approximate k-NN search in high

dimensions efficiently [16]. In this section, we discuss a

replacement for linear k-NN search called fingerprint k-NN

search based on LSH to scale our algorithm to large code

repositories. First, we give an overview of LSH followed by

the discussion on fingerprint k-NN search and its space and

time complexity.

1) Locality-sensitive Hashing: LSH refers to a family of

hash functions which map similar objects to the same bucket

in a hash table with high probability. For approximate k-NN

search, the source objects are mapped to various buckets using

the hash functions. Given a query object, it is first mapped to a

bucket using the same hash functions and then a linear search

is carried out on all objects in that bucket using some similarity

measure based on object type and application. Since there

are different types of object similarity, not one LSH family

will suffice for all cases. Therefore, we have LSH families for

Euclidean distance based similarity and cosine similarity.

Given a distance metric d defined on a set of vectors V and

distance thresholds d1 and d2, an LSH family F is a family

of hash functions such that for each f ∈ F , the following

conditions should hold:

1) if d(~x, ~y) ≤ d1, then probability(f(~x) = f(~y)) ≥ p1
2) if d(~x, ~y) ≥ d2, then probability(f(~x) = f(~y)) ≤ p2

where d1 < d2 and ~x, ~y ∈ V . Such a family is called

(d1, d2, p1, p2)-sensitive.

As an example, let us define an LSH family for hamming

distance between n-dimensional bit vectors. The hamming

distance between two bit vectors x, y, denoted by d(x, y)
is the number of bit positions in which they differ. If the

function fi(x) denotes the ith bit of vector x, then the family

of functions F = {f1, f2, . . . , fn} is an LSH family. Since

the probability of fi(x) = fi(y) for a random bit position i is

1 − d(x, y)/n, the family F is (d1, d2, 1 − d1/n, 1 − d2/n)-
sensitive, where d1 and d2 are hamming distances.

2) LSH Amplification: An LSH family can be amplified

using AND or OR operations to obtain an ideal (p1=1,

p2=0) LSH family. Here we discuss the AND-construction.

Given a (d1, d2, p1, p2)-sensitive LSH family F with functions

{f1, f2, . . . , fn}, the AND-construction on F results in a new

family G with l functions, where each function g ∈ G is

constructed from k′ random functions in F . If g is constructed

from {f1, f2, . . . , fk′}, then

g(x) = g(y) ⇔ fi(x) = fi(y) ∀i = 1, 2, . . . , k′ (6)

Since the k′ functions to construct each of the functions

in G are chosen randomly from F , the LSH family G is

(d1, d2, p
k′

1 , pk
′

2 )-sensitive. By choosing F and k′ judiciously,

we can reduce the collision probability of non-similar vectors

to 0 while keeping the collision probability of similar vectors

significantly away from 0 [17].

3) Fingerprint k-NN Search: Since the k-NN search is

based on Euclidean distance, an LSH family for Euclidean

distance appears to be a good replacement for linear k-NN

search. However, it is not suitable for large datasets because of

high memory consumption [18]. The cosine similarity between

two vectors in the Euclidean space is the cosine of the angle

between them. Since nearest neighbor query results based

on cosine similarity are similar to those based on Euclidean

distance for high-dimensional vectors in Euclidean space [19],

we can use an LSH family for cosine similarity instead of an

LSH family for Euclidean distance. Simhash [20] is one such

technique with very less memory footprint and therefore an

ideal candidate for our requirements.

Simhash maps a high-dimensional vector to a compact

f -bit vector called fingerprint such that the fingerprints of

two similar (as per cosine similarity) vectors are similar.

Therefore, estimating vector similarity using cosine similarity

reduces to finding the similarity between their fingerprints (bit

vectors), for example, using hamming distance. Since there are

a large number of fingerprints, we can use an LSH family for

hamming distance to find the k-nearest fingerprints of a given

query fingerprint. In the rest of this subsection, we discuss how

to generate fingerprints of characteristic vectors, followed by

the discussion on fingerprint k-NN search method.

To generate a fingerprint of f -bits using Simhash, we

initialize an array F of size f with zeros. For each of the

dimensions i in the given characteristic vector ~v, the dimension

is first hashed to an f -bit value h. Then, for each of the bit

positions j in h, if hj is 1, we add vi to F [j], else subtract

vi from F [j], where vi is the weight of dimension i in ~v.

Finally, the fingerprint of ~v is determined based on the sign of

values in F– the jth bit in the fingerprint is set only if F [j]
is positive.

To find out the k-nearest fingerprints of a given query

fingerprint, we use AND-construction on the LSH family for

hamming distance (see Section III-C1). Therefore, we define

l hash functions G = {g1, g2, . . . , gl}, where each function

gi returns a k′-bit hash value. For example, if g1(x) =
(f1(x), f2(x), . . . , fk′(x), then the hash value of x given by

g1 is the concatenation of the bits of x at positions 1, 2, . . . , k′.
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g1(x) = 0110101 

v = [2, 4, …, 10, 5] 

g1 g2 … gl 

[v] 

[v] 

x = 1011011..11 

gl(x) = 1100110 

Fig. 4. Initialization of fingerprint k-NN search

During initialization of fingerprint k-NN search method,

each of the vectors is inserted into l hash tables. The bucket

in a hash table where a vector is inserted is determined by

applying the corresponding hash function in G on the vector’s

fingerprint. This initialization is illustrated in Figure 4. In the

figure, v denotes a characteristic vector and x its fingerprint.

Given a query fingerprint q corresponding to a query vector,

we retrieve the list of vectors in the bucket given by g(q) for

each g ∈ G. Finally, a linear scan is performed on the union

of the lists of vectors to determine the top-k similar vectors

which are at a Euclidean distance of at most η from the query

vector.

4) Time and Space Complexity: The time complexity of

Simhash is O(d × f), where d is the dimension of the

characteristic vector and f is the fingerprint size. In the hash

table indexed by g ∈ G, there can be at most n

2k
′ vectors at

the index g(q) for a query fingerprint q, assuming an even

distribution of vectors. Therefore, the total number of vectors

for linear scan is n

2k
′ × l. Assuming a total cost of O(d) for

each vector comparison and a sufficiently large k′ such that n
is a constant multiple of 2k

′

, the total time complexity is

T = O(d× f) +O(
n

2k′
× l × d) ≈ O(d× (f + l)) (7)

The space complexity of O(n) characteristic vectors is:

S = O(n× κ+ l × 2k
′

× ρ+ l × n× ρ) ≈ O(n× l) (8)

where κ is the size of a characteristic vector and ρ is the size

of a memory address. The first term is the space consumed

by characteristic vectors. The second and third terms denote

the space requirement of l hash tables– the space needed

for the buckets and references to the vectors stored in it. In

comparison with linear k-NN search, the memory requirement

increased by l times. For a code repository with 100 million

lines of code, the number of 1-level characteristic vectors is

approximately 1 billion. Assuming κ=100 bytes, ρ=8 bytes,

k′=24, and l=5, the total memory requirement is approximately

131 GB, which is quite reasonable considering the size of

the repository and the memory capacity of high-end servers.

A distributed implementation of our algorithm could further

reduce the memory requirement of a single server.

TABLE II
CONTROL QUERIES

Label Query

Q1
LoopTimer timer;

while (timer.hasNotExpired()) {}

Q2
VirtualDevice device;

if (device instanceof

VirtualController) {}

Q3
try {}

catch(CryptoException e) {

throw e;

}

Q4
State state;

if (state == State.error) {}

Q5
TaskSpec spec = new

TaskSpecBuilder().build();

TaskManager mgr;

mgr.createLocalTask(spec);

TABLE III
BEST HITS AND GOOD HITS

Query Best Hits Good Hits

Q1 6 11

Q2 3 14

Q3 4 7

Q4 2 8

Q5 1 3

IV. EXPERIMENTAL EVALUATION

Code search tools such as web search engines can be

evaluated using information retrieval metrics such as precision,

recall, and f-measure. Precision is the ratio of number of valid

results to total number of results retrieved. Analogously, recall

is the ratio of number of valid results retrieved to total number

of valid results. The f-measure combines precision and recall

and is computed as the harmonic mean of precision and recall:

f-measure = 2×
precision× recall

precision+ recall
(9)

Since there is no benchmark dataset to compare code search

engines, we do not attempt such comparisons. We run control

queries on a code base and compute the precision, recall and f-

measure of top 5, top 10, and top 20 results. Control queries, as

mentioned in [21] have a reasonable number of results which

can be analyzed manually and its usefulness can be judged

easily. Our evaluation approach is comparable to that followed

in [21] and [22]. We discuss the evaluation methodology in

Section IV-A and the results in Section IV-B.

A. Methodology

Our experiments were carried out using 5 control queries.

For evaluation, we selected an ongoing Java project in

VMware cloud suite with 1448 source files and 174.76 KLoC

(Kilo Lines of Code). To formulate the control queries, we

conducted a survey involving 9 developers working in the
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TABLE IV
RECALL (%) OF BEST AND GOOD HITS FOR LINEAR (L) AND

FINGERPRINT (F) k-NN METHODS

Query k-NN
Top 5 Top 10 Top 20

Best Good Best Good Best Good

Q1
L 50.0 18.18 66.67 54.55 100.0 72.73

F 50.0 18.18 50.0 36.36 100.0 63.64

Q2
L 66.67 14.29 66.67 42.86 100.0 64.29

F 66.67 14.29 66.67 35.71 100.0 57.14

Q3
L 25.0 42.86 50.0 71.43 75.0 100.0

F 25.0 28.57 50.0 57.14 50.0 85.71

Q4
L 50.0 25.0 100.0 62.5 100.0 75.0

F 50.0 25.0 100.0 37.5 100.0 62.5

Q5
L 100.0 66.67 100.0 100.0 100.0 100.0

F 100.0 66.67 100.0 100.0 100.0 100.0

chosen project who use OpenGrok for their development

activities. In the survey, the participants were asked to provide

sample code snippet queries they typically wish to run on their

code base. If some of the queries had the same intent (for e.g.,

how to handle return value of a method?), but used different

data types or methods, we arbitrarily selected one and treated

all of them as the same query. Based on frequency, we selected

top 5 responses as our control queries, which are listed in

Table II.

After selecting the control queries, we asked one of the se-

nior developers working in the project under study to identify

the result set for each of the queries using Eclipse IDE’s search

feature. For example, to identify the result set for Q3, one

could search for all references to the exception and then filter

out irrelevant results. We also asked the developer to categorize

the result set into two groups: best hits and good hits. The

number of results in each of these groups are summarized in

Table III.

To evaluate the precision and recall trade-off due to fin-

gerprint k-NN search, we ran the control queries using two

versions of our algorithm– one using linear k-NN search and

the other using fingerprint k-NN search. For each k-NN search

method and for each control query, we computed the recall of

best hits and good hits in top 5, top 10, and top 20 results.

We also computed the precision, recall, and f-measure of top

5, top 10, and top 20 results, assuming a result to be relevant

if it is a member of either best hits or good hits.

B. Results

The results reported in this section are based on an im-

plementation of the QUERY-BY-EXAMPLE algorithm with

parameter values: K=50, η=1.25, and λ=3. For fingerprint k-

NN search, we set f=64, l=20, and k′=24. In the case of

Simhash, the hash values of dimensions were generated using

MurmurHash [23]. Table IV lists the recall of best and good

hits in top 5, top 10, and top 20 results. The precision, recall,

and f-measure of the results are summarized in Table V.

For 4 out of 5 queries, at least 50% of best hits is retrieved

in top 5 results for both linear and fingerprint methods. This

shows the effectiveness of our ranking. For both linear and

fingerprint methods, all best hits are retrieved in top 20 results

for all queries except one. In the case of good hits, for linear

method, at least 42% of hits is retrieved in top 10 and 64%

in top 20 results. The corresponding figures for fingerprint

method are 35% and 57%. We are not reporting the average

of recall percentage values due to potential bias caused by

smaller result sets. However, our control queries are diverse

enough to validate the search effectiveness of our algorithm

in a real setting.

Except for query Q5, the relevant result sets of all queries

have 10 or more hits. Therefore, it is not meaningful to discuss

the recall of top 5 results of queries Q1-Q4. In the case of

Q5, 75% of hits is recalled in top 5 results. The average

precision of top 5 results of all queries is 0.76 for linear

method and 0.72 for fingerprint method, which shows the

accuracy of our algorithm. It is natural for the precision to

drop for queries with smaller number of hits as the result set

becomes larger; for e.g., Q5. The recall of top 10 and top 20

results of Q5 is 1.0 for both linear and fingerprint methods. For

top 10 results of Q1-Q4, the average precision is 0.8 and 0.63

respectively for linear and fingerprint methods. The average

recall of top 10 results of Q1-Q4 is 0.6 and 0.47 respectively

for linear and fingerprint methods. The corresponding average

f-measure values are 0.68 and 0.53. The average precision,

recall, and f-measure of top 20 results of Q1-Q4 for linear

method are 0.73, 0.81, and 0.76. The corresponding values for

fingerprint method are 0.62, 0.71, and 0.66. These results show

that our algorithm has high precision and recall, which makes

it suitable for practical use. Also, using fingerprint method,

the decrease in precision and recall is only 15% and 12.3%

respectively, which shows that we can achieve high scalability

without compromising much on quality.

V. RELATED WORK

There are many tools that use specialized query languages

to query ASTs. Crew proposed a Prolog-like query language

(ASTLOG) [24] to search syntactical patterns in an AST.

In [25], the authors used OCL (Object Constraint Language)

to write queries which are evaluated against an object model

representing an AST. PMD [26] is a static code analysis tool

which allows users to write new defect patterns in XPath

expressions which are evaluated against ASTs. .QL [27] is

an object-oriented query language used for navigating ASTs

and detecting bugs and coding standard violations. In [28],

the authors used a variant of AWK to express AST patterns.

The main disadvantage of above approaches is the steep

learning curve involved in learning the query language and

understanding ASTs to write meaningful queries.

There are many query languages for source code meant

for different purposes. PQL [29] allows programmers to ex-

press queries that would detect design rule violations. The

SCRUPLE [30] search engine uses a pattern language based

on source programming language to query code exhibiting
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TABLE V
PRECISION (P ), RECALL (R), AND F-MEASURE (F ) OF TOP 5, TOP 10, AND TOP 20 RESULTS

Query k-NN Method
Top 5 Top 10 Top 20

P R F P R F P R F

Q1
Linear 1.0 0.29 0.45 1.0 0.59 0.74 0.74 0.82 0.78

Fingerprint 1.0 0.29 0.45 0.7 0.41 0.52 0.68 0.76 0.72

Q2
Linear 0.8 0.24 0.36 0.8 0.47 0.6 0.8 0.71 0.75

Fingerprint 0.8 0.24 0.36 0.7 0.41 0.52 0.73 0.65 0.69

Q3
Linear 0.8 0.36 0.5 0.7 0.64 0.67 0.63 0.91 0.74

Fingerprint 0.6 0.27 0.38 0.6 0.55 0.57 0.47 0.73 0.57

Q4
Linear 0.6 0.3 0.4 0.7 0.7 0.7 0.73 0.8 0.76

Fingerprint 0.6 0.3 0.4 0.5 0.5 0.5 0.58 0.7 0.64

Q5
Linear 0.6 0.75 0.67 0.4 1.0 0.57 0.21 1.0 0.35

Fingerprint 0.6 0.75 0.67 0.4 1.0 0.57 0.2 1.0 0.33

certain features. CCEL [31] is a query language based on

C++ to express constraints on C++ source code. JQuery [32]

is another tool which uses a custom query language to browse

source code. In [33], the authors extended Dependence Query

Language (DQL) to support queries which contain topics de-

scribing functionality of target code and dependence relations

between source code entities. Strathcona [34] is a tool which

extracts structural information (class, parent class, interfaces it

implements, type of fields, and method calls) of the code being

edited by the programmer and recommends code with similar

structure from an example repository. Code Conjurer [35] is

an Eclipse plug-in which allows users to specify their search

intent as an interface with function declarations in UML

notation. In all these cases, either the query language is highly

specialized or not suitable for general purpose code querying.

Like web search engines, there are many code search

engines which support keyword-based search. Assieme [36],

Codifier [37], and Sourcerer [21] extract syntactic informa-

tion to enable various keyword-based code search options.

JSearch [38] is a tool that indexes syntactic elements in the

source code and allows users to retrieve code samples through

keyword search. OpenGrok [2], Open Hub [4], Krugle [3],

and Grepcode [5] are search engines for open source code

which allow searching syntactic elements using keywords.

There are keyword-based search engines which target specific

software artifacts. For example, Exemplar [39] retrieves soft-

ware projects relevant to a user query expressed in natural

language. Portfolio [40] is a search tool that retrieves functions

relevant to a user query. SnipMatch [41] is an Eclipse plug-in

which leverages markups specified by snippet authors in code

snippets to improve keyword-based snippet search.

There are code search techniques which use queries in

surface programming language. In [7], the authors address the

query by example problem by querying ASTs using XPath [42]

expressions. The input code snippet is converted to an AST,

which is then represented using an XPath expression. The

XPath expression is evaluated against a database of ASTs to

generate the query result. The main disadvantage is that this

approach constraints the type of syntactic patterns which the

user can input (almost 8 types in total). Also, their approach

is highly sensitive to XPath query formulation, which in turn

depends on the syntactic correctness of the input code snippet.

When they tried to generate XPath expression for two or more

statements, the expression became complex and the evaluation

was unsuccessful. CodeGenie [43] is a search engine which

allows developers to input test cases. The code repository

is searched using Sourcerer (keyword search) based on the

information in the tests. It also verifies the suitability of results

by integrating it into a developer’s current project and running

the input tests.

The query by example problem can be considered as a spe-

cial case of code clone detection. However, code clone detec-

tion methods cannot be applied directly due to the challenges

mentioned in Section I. In the rest of this section, we discuss

code clone detection methods which share techniques similar

to ours. In [44], the authors proposed a method for detecting

similar Java classes by comparing FAMIX (a programming

language independent model for representing object oriented

source code) tree representation of classes using tree similarity

algorithms. Deckard [14] is a clone detection tool which uses

characteristic vector approximation of ASTs and Euclidean

LSH to create clusters of similar vectors. In [45], an AST

subtree is approximated using a fingerprint which is a tuple

of tree size and a hash reflecting its structure. The clones are

then detected by comparing fingerprints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm based on AST

structural similarity to solve the query by example problem

in source code repositories. We also proposed an approach

based on numerical vector approximation of trees and locality-

sensitive hash functions to scale the algorithm to code reposi-

tories with several million lines of code. Using a set of control

queries, we demonstrated the effectiveness of our algorithm

in real settings. As part of future work, we plan to conduct

experiments with a large code repository to estimate the query

response time and CPU and memory usage of our algorithm

with varying query rates.
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