
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

Reducing accidental clones using instant clone
search in automatic code review

Vipin Balachandran
VMware, Palo Alto, USA

vbala@vmware.com

Abstract—Accidental clones occur when developers are not
familiar with the codebase. We propose changes in the developer
code review workflow to leverage online clone detection to identify
duplicate code during code review. A developer survey’s responses
indicate that the proposed workflow change will increase the
usage of clone detection tools and can reduce accidental clones.

I. INTRODUCTION

Code duplication increases software maintenance cost [1]–
[3], leads to incorrect program behavior due to inconsistent
changes to cloned fragments [4], and affects software qual-
ity [3], [4]. According to Juergens et al. [4], a significant
portion of non-identical clones is created unintentionally. This
type of cloning is referred to as cloning by accident [3], [5].
The accidental clones are created when the developers are
not familiar with the entire codebase. The developers working
on different modules of a software project may re-implement
methods if they are not aware of existing implementations.
Kononenko et al. [6] report that the biggest challenge for
developers during code reviews is gaining familiarity with the
codebase [6].

It is observed that the majority of developers in our or-
ganization do not use clone detection tools before merging
the code. This observation is consistent with the findings of
Johnson et al. [7] concerning the usage of static analysis tools.
Integrating clone detection tools with the build process is not
sufficient because the duplicate code is often merged by the
time the build is generated. It is important to show program
analysis reports early in the development (preferably before
merging the code) when developers are more likely to address
any problem [8], [9]. As mentioned in [8], build integration
is not practical when the analysis is time-consuming, or
required to restrict the analysis to changes in a diff. Also, the
build reports do not facilitate developer discussions that are
essential before attempting non-trivial refactoring to remove
the duplicate code.

Similar to the observations by Sadowski et al. [8], we
also observed that the usage of program analysis tools is
low when developers have to context switch to run the tools.
Integration into standard developer workflows is required for
the effective usage of program analysis tools [7]. Peer code
review is the most important process for reducing defects and
improving software quality [6]. The light-weight, tool-based
code review, also known as modern code review [10], is widely
adopted by the software industry [10]–[12] and open-source

projects [6], [13]. The TRICORDER program analysis plat-
form from Google [8] and the Review Bot from VMware [11]
have shown that the integration of static analysis tools with
modern code review improved software quality. Inspired by
these findings, we propose integrating clone detection into
tool-based code reviews to reduce accidental clones.

The program analysis report shown at code review time
ensures peer accountability [8]. Therefore, automatic code
review generated from the clone detection tool’s report is
an effective way to ensure that such reports are analyzed.
It eliminates context switches and enables discussions about
refactoring using the threaded conversations supported by
modern code review tools. The review comments should be
restricted to the changed lines to keep the code review relevant
to the diff under consideration. Therefore, the clone detection
tool should be able to find duplicates similar to a code snippet.
Also, it should scale to large repositories since developers
are less likely to act on delayed analysis reports [8]. These
requirements necessitate the use of real-time [14] or instant
clone search tools [15] to generate an automatic review.

The changes in code review workflow will not be successful
without developer acceptance. To gauge the interest and guide
the tool’s design, we conducted a developer survey. Section II
provides an overview of our proposal and discusses the survey
results. The related work is discussed in Section III, and we
conclude in Section IV.

II. WORKFLOW INTEGRATION

The code snippet search discussed in [16] called Query by
Example (QBE) satisfies our instant clone search requirements
because it is possible to query smaller code fragments within
a few seconds. Also, it scales well to large projects. We
implemented an automatic code review tool named RBOT-
CC for Java projects hosted in GitLab [17] repositories. When
notified of a pull request, RBOT-CC downloads and applies
the diff files to generate the patched source files. The ASTs are
generated for each of the source files. It then queries the QBE
server for the source corresponding to the methods (identified
by AST node type) modified by the diff files. Finally, the query
result is used to generate the review comments.

A. Developer Survey

We prepared a survey consisting of 7 multiple-choice ques-
tions to answer the following research questions:

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.



2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

• RQ1: Does the proposed workflow integration increase
the usage of clone detection tools?

• RQ2: What information developers expect in code review
comments that indicate potential duplication?

• RQ3: What factors affect the developer’s decision to
address or reject such review comments?

The survey had a short description of accidental clones before
presenting the questions. We sent the survey to 30 devel-
opers working in Cisco, Google, Microsoft, and VMware,
where tool-based modern code review workflows are standard
practice [8], [10]–[12], [18]. The survey was open for one
week, and we received 17 responses (57% response rate).
Even though the number of survey responses is small, it is
comparable to a similar study [7]. Also, the goals of this
study are feasibility analysis and to provide guidelines for
the tool design and not to evaluate the effectiveness of the
workflow modification. The respondents’ industry experience
ranges from 2 to 21 years, with a median of 11 years. Since
it was optional to reveal the identity, the majority of the
responses were anonymous. Therefore, we could not correlate
responses to specific companies.

To answer RQ1, we asked the following questions:
• Q1: How often do you run a code clone detection tool

before merging the code?
• Q2: How do you react to a code review comment which

indicates that you might have duplicated a method unin-
tentionally?

Nine out of 17 developers responded that they do not run any
tool, while five developers responded they rarely do. Only
three developers responded that they run a tool most of the
time. This response is consistent with the usage of static
analysis tools among developers [7]. For Q2, all 17 developers
responded that they would look into the issue described in
the comment. This higher acceptance rate may be partly due
to the peer accountability enabled by code reviews. Based on
these responses, we can answer RQ1– integration of code clone
detection tool into modern code review can increase its usage.

We asked the developers the information they look for in a
review comment (Q3) that notifies code duplication to study
RQ2. Along with the pre-defined choices, we also provided a
field for a free-text response. Fourteen developers responded
that they are interested in the path and the signature of the
original code, and ten developers said that they would like to
see the original code snippet. We will use these responses to
decide the review comment format of RBOT-CC.

We used the following question to study RQ3:
• Q4: What factors influence your decision to address the

review comment (i.e., remove the duplicate code)?
There were pre-defined choices and an option for a free-text
response. We also asked two related questions to understand
the specific cases that influence the acceptance (Q5) or the
rejection (Q6) of the review comment. The main factor that
influences the decision is the complexity of the refactoring in-
volved (10 developers). The other factors are: (i) the criticality
of the original method that needs refactoring (8 responses);

(ii) the consensus reached based on the discussion with code
reviewers (7 responses); and (iii) the urgency of the current
patch (5 responses). The developers indicated that they would
address the review comment if the refactoring is localized to
the new code, or the duplicate code is an identical clone (11
responses each). Seven developers mentioned that they would
address the comment if the original code contains a bug that is
fixed in the current patch. Following are the main reasons for
rejecting a comment: (i) the refactoring is complex and affects
files/services owned by others (13 responses); (ii) the original
method is in several critical paths and hence the refactoring
is risky (11 responses); and (iii) the current change is fixing
a high priority bug and hence should be merged quickly (9
responses). As a follow-up question to Q6, we asked the
developers whether they would like to create a task to track
the refactoring if it cannot be addressed in the current change
(Q7), and 15 out of 17 developers responded positively. Two
developers responded that their decision would depend on the
duplicate code.

III. RELATED WORK

Review Bot [11] is a code review tool that uses Check-
style [19], PMD [20], and FindBugs [21] to generate automatic
code reviews to detect coding standard violations and bugs.
In [8], the authors proposed a program analysis platform that
integrates static analysis tools into code review. Upsource [22]
is a code review tool that generates automatic reviews using
static analysis tools. IntelliJ IDEA [23] is an IDE that has
minimal support for detecting repetitive blocks of code due
to copy-paste. To the best of our knowledge, this is the first
paper that discusses the integration of code clone detection
into code review workflow.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed using online clone detection
for automatic code review generation to detect and remove
accidental clones. Through a developer study, we have shown
that the proposed workflow integration will improve the usage
of code clone detection tools and therefore reduce accidental
clones. The survey results show that the developers rarely run
stand-alone clone detection tools. The research community
should focus more on online clone detection tools, which can
be better integrated into existing developer workflows.

We are planning to incorporate the insights learned from the
survey responses in the comment generation of RBOT-CC. The
developers do not prefer to refactor the original code if it is
critical, but their perception of criticality may not be accurate.
To enable the developers to make an informed decision, we
consider incorporating the NodeRank [24] value of the method
that measures its relative importance in the review comment.
Another option is to integrate a source code browser that
enables searching all the references of a method. The next step
is to qualitatively measure the effectiveness of the proposed
workflow integration using a developer study.



2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

REFERENCES

[1] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Soft-
ware quality analysis by code clones in industrial legacy software,” in
Proceedings Eighth IEEE Symposium on Software Metrics, 2002, pp.
87–94.

[2] R. Koschke, “Survey of research on software clones,” in Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2007.

[3] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[4] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 2009 IEEE 31st International Conference on Software
Engineering, 2009, pp. 485–495.

[5] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey, “Cloning by accident:
an empirical study of source code cloning across software systems,”
in 2005 International Symposium on Empirical Software Engineering,
2005., 2005, pp. 10 pp.–.

[6] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in 2016 IEEE/ACM 38th International Confer-
ence on Software Engineering (ICSE), 2016, pp. 1028–1038.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp.
672–681.

[8] C. Sadowski, J. v. Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1,
2015, pp. 598–608.

[9] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE software, vol. 25, no. 5, pp.
22–29, 2008.

[10] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 712–721.

[11] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in 2013 35th International Conference on Software Engineering
(ICSE), 2013, pp. 931–940.

[12] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[13] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “An
empirical study of design discussions in code review,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2018, pp. 1–10.

[14] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” in 2011 18th Working Conference
on Reverse Engineering. IEEE, 2011, pp. 23–27.

[15] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Instant code clone
search,” in Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, 2010, pp. 167–176.

[16] V. Balachandran, “Query by example in large-scale code repositories,”
in 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2015, pp. 467–476.

[17] “GitLab,” https://about.gitlab.com/.
[18] J. Cohen, “Best kept secrets of peer code review. smart bear,” Inc.,

Austin, TX, p. 117, 2006.
[19] “Checkstyle,” https://checkstyle.sourceforge.io/.
[20] “PMD Source Code Analyzer,” https://pmd.github.io/.
[21] “FindBugs,” http://findbugs.sourceforge.net/.
[22] “Upsource,” https://www.jetbrains.com/upsource/.
[23] “IntelliJ IDEA,” https://www.jetbrains.com/idea/.
[24] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-

based analysis and prediction for software evolution,” in 2012 34th
International Conference on Software Engineering (ICSE), 2012, pp.
419–429.


