
Fix-it: An Extensible Code Auto-Fix Component in
Review Bot

Vipin Balachandran
VMware

Bangalore, India
vbala@vmware.com

Abstract—Coding standard violations, defect patterns and non-
conformance to best practices are abundant in checked-in source
code. This often leads to unmaintainable code and potential bugs
in later stages of software life cycle. It is important to detect
and correct these issues early in the development cycle, when it
is less expensive to fix. Even though static analysis techniques
such as tool-assisted code review are effective in addressing this
problem, there is significant amount of human effort involved
in identifying the source code issues and fixing it. Review Bot
is a tool designed to reduce the human effort and improve the
quality in code reviews by generating automatic reviews using
static analysis output. In this paper, we propose an extension
to Review Bot– addition of a component called Fix-it for the
auto-correction of various source code issues using Abstract
Syntax Tree (AST) transformations. Fix-it uses built-in fixes to
automatically fix various issues reported by the auto-reviewer
component in Review Bot, thereby reducing the human effort
to greater extent. Fix-it is designed to be highly extensible–
users can add support for the detection of new defect patterns
using XPath and XQuery and provide fixes for it based on AST
transformations written in a high-level programming language.
It allows the user to treat the AST as a DOM tree and run
XQuery UPDATE expressions to perform AST transformations
as part of a fix. Fix-it also includes a designer application which
enables Review Bot administrators to design new defect patterns
and fixes. The developer feedback on a stand-alone prototype
indicates the possibility of significant human effort reduction in
code reviews using Fix-it.

I. INTRODUCTION

Coding standard violations and defect patterns are abundant
in checked-in code [1]. The presence of these source code
issues lead to unmaintainable code and bugs in later stages
of software life cycle, when it is more expensive to fix. Even
though static analysis techniques such as peer code review
and automatic static analysis are considered to be effective
for solving this problem, as observed in [1], they are not
highly effective in practice due to: a) significant human
effort, b) difficulty in validating code against a lengthy coding
standard and c) prioritization of logic verification in favor of
enforcing style and best practices.

In [1], the author proposed a tool called Review Bot,
which is an extension to the open-source code review tool
Review Board [2]. Review Bot uses output of multiple static
analysis tools to automatically post a code review, which
covers majority of coding standard violations and common
defect patterns. It also recommends appropriate code reviewers
based on change history of source code lines. Even though the

automatic reviews reduce the human effort and improve the
overall code review quality, the developer still has to analyze
the issues reported in automatic review, find out potential
fixes and re-submit the code for review. Considering the
fact that fixes for a subset of coding standard violations and
defect patterns can be automated, we propose a pre-processing
step before creating an automatic review from static analysis
output. This pre-processing step aims to fix automatically a
large subset of source code issues. Post this step, there will
be less number of source code issues for the developer to fix,
which would improve the productivity. As indicated by the
user study in [1], majority of source code issues in automatic
reviews are due to lack of understanding of coding standard
rules and best practices, and the developers were willing to
address majority of these issues. This implies the possibility
of significant human effort reduction by the integration of
automatic source code correction with code review.

Towards this goal of automatic correction of source code
issues, we propose a new component called Fix-it in Review
Bot. Fix-it internally maintains the source code as Abstract
Syntax Tree (AST) and uses AST transformations for auto-
correction. It uses built-in fixes performing AST transfor-
mations to automatically fix the various issues reported by
the auto-reviewer component in Review Bot. Fix-it allows the
users to treat the AST as an XML DOM tree and supports
extensibility in the form of custom defect patterns (AST
structure pattern) written in XPath or XQuery [3]. It also
supports extensibility in the form of custom fixes (performing
AST transformations) written in Java or XQuery UPDATE
expressions. Even though the current implementation supports
only Java, the architecture is generic to support code written
in any programming language which has an AST parser. Fix-it
also includes a designer application to facilitate Review Bot
administrators to create new defect patterns and fixes.

Refactoring is another task where significant human effort
is involved. Even though there are refactoring tools such as
TXL [4], Stratego/XT [5] etc., which support extensibility in
terms of rules written in a tool-specific language, they are
often under-utilized. Emerson et al. [6] reported that 90% of
the refactorings are manual without using any refactoring tool.
One of the reasons for this under-utilization is the learning
curve involved in understanding these tools [7]. Fix-it supports
custom fixes which can apply a particular automatic refactor-
ing. Since Fix-it is used in a centeralized way, developers need

STATICQ
ANALYZERS

STATICQ
ANALYZERS

OUTPUTQ
PARSERS
OUTPUTQ
PARSERS

AUTO-REVIEWER
(PROBLEMQ

IDENTIFICATION)

AUTO-REVIEWER
(PROBLEMQ

IDENTIFICATION)

ASTQPARSERQ
SELECTOR

ASTQPARSERQ
SELECTOR

ASTQPARSERSASTQPARSERS

DOMQTREEQ
GENERATOR
DOMQTREEQ

GENERATOR

ASTQNODEQFILTERASTQNODEQFILTER

AUTOFIXQ
STAGEQ1
AUTOFIXQ
STAGEQ1

AUTOFIXQ
STAGEQ2
AUTOFIXQ
STAGEQ2

ASTQ
DESERIALIZER

ASTQ
DESERIALIZER

VISUALQCLIENTVISUALQCLIENT

DIFFQGENERATORDIFFQGENERATOR

IFix/IQueryFixIFix/IQueryFix

SOURCESOURCE

CONFIGCONFIG

ASTQNODEQFILTERQ
QUERIES

ASTQNODEQFILTERQ
QUERIES

ASTQUPDATEQ
QUERIES

ASTQUPDATEQ
QUERIES

MODIFIEDQ
SOURCE

MODIFIEDQ
SOURCE

1 2 3 4 5

XMLQQUERYQ
ENGINE

XMLQQUERYQ
ENGINE

Fig. 1. Fix-it architecture

not learn how to write the refactoring code.
It could be argued that the developers themselves can run

static analysis tools within their development environment and
manually fix the issues before submitting the changelist for
code review. As mentioned in [1], it might be difficult to
enforce such a practice. The same argument applies for the
use of refactoring tools before code review submission. Also,
it would be easier to apply a common configuration for these
tools when used in a centralized manner.

The design of Fix-it is motivated by the following observa-
tions.

• ASTs are convenient representation of a source code to
apply transformations.

• ASTs can be modeled as a DOM tree.
• XML and its query languages are widely adopted.
The rest of the paper is organized as follows. In Section II,

we discuss Fix-it architecture followed by its extensibility in
Section III. Section IV discusses the Fix-it designer application.
Section V contains developer feedback on fixes possible for
a subset of static analysis rules enabled in Review Bot. The
related work is in Section VI and we conclude in Section VII.

II. FIX-IT DETAILS

A. Fix-it Architecture

The architecture of Fix-it is shown in Figure 1. The modules
within Fix-it and the modules in Review Bot which it interacts
with are grouped into the following functional stages:

1) Problem Identification
The modules in this stage are already part of Review Bot.
These modules are responsible for identifying the issues
in the source code using automatic static analysis tools
such as FindBugs [8]. The Auto-Reviewer invokes various
Static Analyzers, which in-turn analyzes the code for
coding standard violations and defect patterns. The Config
module supplies the necessary configuration (rules/checks
to run, customized error/warning messages etc.) for the
static analyzers. The output format varies from one static
analyzer to another; hence the auto reviewer uses the

Output Parsers module to convert the various static
analyzer output to a common format.
It should be noted that a stand-alone version of Fix-it
can be made by implementing these modules separately.
In such a case, the auto-reviewer could be relabeled as
problem identification module.

2) AST Generation
In this stage, the AST Parser Selector selects an AST
parser based on the source language and an AST is
constructed. The current implementation uses ASTParser

in Eclipse JDT core [9]. In an alternate implementation,
one could also use a collection of ANTLR parsers [10]
to add support for multiple programming languages.

3) DOM Tree Generation and Node Filtering
The DOM Tree Generator creates a DOM tree adapter
which wraps the input AST in such a way that the updates
on the DOM tree are translated to updates on the under-
lying AST. The AST Node Filter uses the XML Query
Engine to evaluate XPath and XQuery expressions (AST
Node Filter Queries) to filter out AST nodes which match
user-defined defect patterns. The current implementation
uses Saxon [11] as the query evaluation engine.

4) Auto-correction This stage uses a collection of automatic
fixes to fix some of the source code issues identified in
Stage 1 and defect patterns identified in Stage 3. The
Autofix Stage1 module selects and applies a fix (written
in Java) based on the source code issue type or AST node
filter query. The Autofix Stage2 module applies the fixes
written as XQuery UPDATE expressions (AST Update
Queries). It transforms the AST by evaluating the queries
on the DOM tree wrapping the AST.

5) User Interaction This is the final stage– it generates the
modified source code from the transformed AST (AST
Deserializer) and presents the identified problems and
the modified source code to the user (Visual Client).
The visual client uses a Diff Generator to generate the
side-by-side line diff and provides options to inspect the
problems, corresponding fixes and to selectively apply a
subset of fixes to the original source file.

FIX-IT(srcText)
1 P = FINDPROBLEMS(srcText) // Stage1
2 // Stage2
3 parser = RESOLVE-AST-PARSER(srcText)
4 ast = parser .PARSE(srcText)
5 // Stage3
6 domTree = GENERATE-DOM-TREE(ast)
7 i = 1
8 for each q ∈ AST-NODE-FILTER-QUERIES()
9 result = EVALUATE-QUERY(domTree, q)

10 C[i] = CREATE-FIX-CONTEXT(result , q, ast)
11 i = i+ 1
12 // Stage4
13 for j = 1 to P. length
14 C[i] = CREATE-FIX-CONTEXT(P [j], ast)
15 i = i+ 1
16 for i = 1 to C. length
17 fix = RESOLVE-FIX(C[i])
18 fix .APPLY(C [i])
19 for each q ∈ AST-UPDATE-QUERIES()
20 EVALUATE-QUERY(domTree, q)
21 // Stage5
22 modifiedSrc = DESERIALIZE(ast)
23 return VISUAL-CLIENT(srcText ,modifiedSrc)

Fig. 2. Algorithm - Fix-it

B. Algorithm

The fix-it algorithm is in Figure 2. The problems in the
source code are found in line 1. The AST parser is resolved
based on the source language and the AST is generated in lines
3-4. The for loop in line 8 filters AST nodes by evaluating
XPath and XQuery expressions (line 9) on the AST DOM tree
adapter (created in line 6) and creates fix context for each of
the query results (line 10). The fix context for each of the
problems identified in Stage1 is created in line 13. The for
loop in line 16 determines the fix (line 17) for each of the fix
contexts and applies the fix (line 18). In line 19, the AST is
transformed by evaluating XQuery UPDATE expressions. The
transformed AST is deserialized in line 22 and the visual client
is created and returned in line 23.

III. EXTENDING FIX-IT

A. Support for New Static Analyzers

New static analyzers can be added in Stage1 if it is possible
to write an output parser for it. Most of the static analyzers
produce output with some structure and an output parser is
feasible in most cases. The current implementation of Review
Bot supports only Java and uses FindBugs, Checkstyle [12]
and PMD [13] for static analysis. It is a future work to add
support for other languages; the main challenge in Fix-it will
be to modify the fix stages to work with different types of
ASTs.

context.getUnit().accept(new ASTVisitor() {
@Override
public boolean visit(MethodDeclaration node) {

for (Object obj : node.modifiers()) {
Modifier m = (Modifier) obj;
if (m.getStartPosition()==context.getPosition()) {

context.getASTRewrite().remove(m, null);
break;

}
}
return false;

}
});

Listing 1. Fix for Checkstyle’s RedundantModifier check

«interface»u
IFixu

+uapply(contextu:uStaticAnalyzerProblemFixContext)u

RedundantModifierFixu

+uapply(contextu:uStaticAnalyzerProblemFixContext)u

HiddenFieldFixu

+uapply(contextu:uStaticAnalyzerProblemFixContext)u

Fig. 3. Part of IFix type hierarchy

B. Adding a New fix

If there is no existing fix for a problem identified in Stage1,
users can write a fix in Java and add to the collection of
fixes. This is done by implementing the IFix interface (Figure
3) and associating the .class file with the problem ID. The
details of the identified problem will be passed in as an
instance of StaticAnalyzerProblemFixContext (Figure 4(a)).
As an example, Listing 1 is a snippet from the built-in
RedundantModifierFix for the RedundantModifier check (to
detect redundant modifiers; for example, public, static,
final modifiers are redundant for a variable declaration in
an interface) in Checkstyle. Users can follow the same
pattern of visiting interested node type (MethodInvocation
in RedundantModifierFix), checking if the node covers the
problem identified and finally applying changes to the node.
The Fix-it designer (Section IV) can be used to identify the
AST node type associated with a specific problem.

C. Support for Custom Defects

Users can write XPath or XQuery expressions to detect
custom defect patterns. For example, the following XPath

@Override
public void apply(QueryFilterFixContext context) {

for (QueryMatch m : context.getQueryMatch()) {
assert m instanceof AstNodeMatch;
ASTNode node = ((AstNodeMatch) m).getAstNode();
assert node instanceof NumberLiteral;
NumberLiteral literal = (NumberLiteral) node;
context.getASTRewrite().set(literal, NumberLiteral.

TOKEN_PROPERTY,
"0" + literal.getToken(), null);

}
}

Listing 2. Fix for the violation of missing digit before decimal point

 StaticAnalyzerProblemFixContext

 - issue : SourceCodeIssue
 - position : int

 + getIssue() : SourceCodeIssue
 + getPosition() : int

 QueryFilterFixContext

 - query : String
 - queryMatch : List<QueryFilterFixContext.QueryMatch>

 + getQuery() : String
 + setQuery(query : String)
 + getQueryMatch() : List<QueryFilterFixContext.QueryMatch>
 + setQueryMatch(queryMatch : List<QueryFilterFixContext.QueryMatch>)

 FixContext

 - ast : AST
 - astRewrite : ASTRewrite

 + getAST() : AST
 + getASTRewrite() : ASTRewrite

(a) FixContext type hierarchy

«interface»l
QueryMatchl

AstNodeMatchl

-lastNodel:lASTNodel

+lgetAstNode()l:lASTNodel
+lsetAstNode(astNodel:lASTNode)l

AstNodePropertyMatchl

-lastNodel:lASTNodel
-lpropertyl:lStructuralPropertyDescriptorl

+lgetAstNode()l:lASTNodel
+lsetAstNode(astNodel:lASTNode)l
+lgetProperty()l:lStructuralPropertyDescriptorl
+lsetProperty(propertyl:lStructuralPropertyDescriptor)l

(b) QueryMatch type hierarchy

Fig. 4. Fix context types

Fig. 5. Fix-it designer

expression when evaluated on a DOM tree adapter of an AST
detects violations of the coding standard rule: “Floating point
constants should always be written with a digit before the
decimal point.”.
//VariableDeclarationFragment[../..//@PRIMITIVETYPECODE="

float" and fn:starts-with(.//NumberLiteral/@TOKEN, ".")
]//NumberLiteral

Filter queries like the above can be designed using the Fix-
it designer application (Section IV-A). The results of the
filter query are used to construct a fix context (instance of
QueryFilterContext, see Figures 4(a) & 4(b)), which is then
passed to the AutoFix Stage1 module, where a fix (implemen-
tation of IQueryFilterFix which has a method accept with
an argument of type QueryFilterContext) is resolved based
on the query string and applied. The fix in the case of the
above filter query involves modifying the TOKEN property of
the NumberLiteral AST node (Listing 2). If the defect pattern
is complicated to be expressed in XPath or XQuery, users can
input the query as ‘/’ which matches the root of the AST and
the corresponding IQueryFilterFix can traverse the AST to
find the desired defect pattern and fix it.

let $pattern := "ˆ[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$"
for $i in //FieldDeclaration

[MODIFIERS/Modifier[@KEYWORD="final"]]
//SimpleName[not(fn:matches(@IDENTIFIER, $

pattern))]
let $b := $i/@NAMEBINDING
let $id := fn:upper-case($i/@IDENTIFIER)
return (

replace value of node $i/@IDENTIFIER with $id,
for $j in //STATEMENTS//SimpleName[@NAMEBINDING=$b]

return replace value of node $j/@IDENTIFIER with $id
)

Listing 3. Fix for Checkstyle’s ConstantName check

D. Writing a Fix in XQuery

In cases where a fix is possible by simply deleting a
node in the AST or by replacing the value of an AST node
property, users can provide an XQuery UPDATE expression
which modifies the AST DOM tree adapter. For example, the
expression in Listing 3 provides a fix for the ConstantName

check in Checkstyle which mandates that a constant identifier
contains only upper-case letters, digits and underscores.

(a) AST view and filter based on XPath expression (b) AST transformation using XQuery

Fig. 6. Designing fixes using XPath and XQuery

IV. FIX-IT DESIGNER

The designer application provides an interface for designing
AST node filter queries and AST DOM tree transformation
queries. Figure 5 shows the main window. The AST view
pane displays the AST of the code snippet entered in Source
Code pane. For example, the AST sub-tree corresponding
to the variable declaration float f = .5f is shown in Fig-
ure 6(a). The highlighted AST Node corresponds to the
code fragment “f = .5f”. Each of the AST nodes can
have zero or more attributes (names prefixed with @) and
zero or more child elements (nodes with name in upper-case
letters). Each of the child elements can have zero or more
AST nodes as its children; the child count is in parentheses
after the node name. The *BINDING attributes are special
attributes which doesn’t have a structural significance and is
used for cross-referencing between AST nodes. For example,
any SimpleName node corresponding to the float variable
f (say the node representing f in the ExpressionStatement

f++) will have the same NAMEBINDING value as that of its
VariableDeclarationFragment (node representing its decla-
ration). Listing 3 uses this idea to find the references of the
constant identifier.

A. Designing AST Node Filter

A node filter can be written in either XPath or XQuery

considering the AST as an XML DOM tree. Figure 6(a) shows
the results of evaluating the following XPath expression on the
AST shown in the AST view pane.
//VariableDeclarationFragment[../..//@PRIMITIVETYPECODE="

float" and fn:starts-with(.//NumberLiteral/@TOKEN, ".")
]//NumberLiteral

In this case, the user is interested in all floating point literals
starting with a decimal point. The expression returns all
variable declaration nodes with float type if the corresponding
literal starts with a decimal point. Listing 2 is a fix corre-
sponding to this filter.

If the filter query is complicated, XQuery FLWOR expres-
sion can be used instead of XPath. The following example

shows the filter for unused method parameter. The query
returns all the variable declaration nodes which are method
parameters if they are not referenced at least once in the
method body.
for $i in //MethodDeclaration/PARAMETERS/

SingleVariableDeclaration
let $b := $i/@NAMEBINDING
where (

fn:empty($i/../../BODY/Block//SimpleName
[@NAMEBINDING = $b])

)
return $i

B. Designing AST update queries
Figure 6(b) shows the output of evaluating the following

XQuery UPDATE expression.
for $i in //MethodInvocation[EXPRESSION/SimpleName and

ARGUMENTS/StringLiteral and @METHODBINDING = "Ljava/
lang/String;.equals(Ljava/lang/Object;)Z"]

let $lvalue := $i/EXPRESSION/SimpleName
let $rvalue := $i/ARGUMENTS/StringLiteral
return (

replace node $lvalue with $rvalue,
replace node $rvalue with $lvalue

)

This UPDATE expression fixes the violation of Checkstyle’s
EqualsAvoidNull check which ensures that the string literal
is on the left side of equals() comparison with a String

instance variable. On evaluating this expression, it finds all
String.equals method invocation nodes with variable name
on left side and string literal on right side and swap them.

The next example provides the fix for the case where a
floating point literal starts with a decimal point.
for $i in //VariableDeclarationFragment[../..//

@PRIMITIVETYPECODE="float" and fn:starts-with(.//
NumberLiteral/@TOKEN, ".")]//NumberLiteral

let $v := fn:concat("0", $i/@TOKEN)
return replace value of node $i/@TOKEN with $v

V. RESULTS

A. Feedback on Checkstyle Fixes
As per the results in [1], on average, 86% of comments in

a Review Bot automatic review was generated by Checkstyle.

TABLE I
DEVELOPER FEEDBACK ON CHECKSTYLE FIXES

Checkstyle
Module

#Rules
enabled

#Rules
with fixes

#Rules with fixes
(advanced features)

Annotations 2 2 2
Block Checks 5 2 5
Class Design 6 4 5
Coding 30 16 19
Duplicate Code 1 0 0
Headers 1 1 1
Imports 6 4 4
Javadoc Comments 4 0 0
Metrics 5 1 1
Miscellaneous 6 3 6
Modifiers 2 2 2
Naming Conventions 11 5 10
Regexp 4 3 3
Size Violations 6 0 1
Whitespace 12 0 12
Sum 101 43 71

In an attempt to estimate the effort reduction due to Fix-it,
we requested an experienced developer who is proficient in
Java and XML technologies to check whether fixes can be
provided for various Checkstyle rules enabled in Review Bot.
The developer was provided with all the details of Fix-it and
ways to extend it and feedback was requested on the following:

• For each of the rules enabled, is it possible to provide a
fix with the current features in Fix-it?

• For rules where a fix is not possible, is it possible
to provide a fix if Fix-it supports complex refactorings
involving multiple files and manipulating the source code
text directly?

The feedback grouped by functionality is given in Table I. The
ability to fix 43% of issues with the current features and 70%
with advanced features (planned for future) implies significant
effort reduction during code review. Details about the grouping
can be found in Checkstyle online documentation.

VI. RELATED WORK

The Eclipse IDE [14] has support for automatic code for-
matting and cleanup. It also supports automatic code correction
in the form of quickfixes. Even though the formatting and
cleanup features can be user configured, it is not possible to ex-
tend any of these features. Static analysis tools like FindBugs
and Checkstyle support extensibility by writing new detectors
in Java. The static analysis tool PMD supports extensibility via
Java or by writing AST defect patterns using XPath, which is
quite similar to the node filtering use case in Fix-it designer.
However, there is no support for automatic correction in any
of these tools. AppPerfect [15] is a static analyzer which uses
around 750 rules to detect various source code issues and
automatically fixes 180 issues, but lacks extensibility. Also, as
mentioned in [16], static analysis tools will receive limited use
depending on how they are integrated with the development
process. There are several refactoring tools which support user

extensibility [4], [5], [17], [18]; however these type of tools
are often under utilized [6] and it might be difficult to enforce
its usage as in the case of static analysis tools. The utilization
of refactoring tools could be improved by a tight integration
with the development process, like the way we proposed in
this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a code auto-correction compo-
nent called Fix-it in Review Bot in order to reduce the human
effort in code review to a significant extent and to improve
the code quality. We discussed various ways to extend Fix-
it and the designer tool to support extensibility. Support for
writing complex refactorings involving multiple files, hooking
into external frameworks during autofix stages and adding new
languages etc. are some of the future works planned.

VIII. DOWNLOADS

A stand-alone prototype version of Fix-it and the demonstra-
tion video can be downloaded at http://bit.ly/12fIiu6.

REFERENCES

[1] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 931–940.

[2] “Review Board,” http://www.reviewboard.org/.
[3] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,

J. Siméon, and P. Wadler, “Xquery 1.0 and xpath 2.0 formal semantics,”
W3C recommendation, vol. 23, 2007.

[4] J. R. Cordy, “Source transformation, analysis and generation in txl,”
in Proceedings of the 2006 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, ser. PEPM ’06.
New York, NY, USA: ACM, 2006, pp. 1–11.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/xt
0.17. a language and toolset for program transformation,” Sci. Comput.
Program., vol. 72, no. 1-2, pp. 52–70, Jun. 2008.

[6] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how we
know it,” Software Engineering, IEEE Transactions on, vol. 38, no. 1,
pp. 5 –18, jan.-feb. 2012.

[7] D. Campbell and M. Miller, “Designing refactoring tools for developers,”
in Proceedings of the 2nd Workshop on Refactoring Tools, ser. WRT ’08.
New York, NY, USA: ACM, 2008, pp. 9:1–9:2.

[8] “FindBugs,” http://findbugs.sourceforge.net.
[9] “JDT Core Component,” http://www.eclipse.org/jdt/core/index.php.

[10] “ANTLR,” http://www.antlr.org/.
[11] “SAXON - The XSLT and XQuery Processor,” http://saxon.sourceforge.

net/.
[12] “Checkstyle,” http://checkstyle.sourceforge.net/.
[13] “PMD,” http://pmd.sourceforge.net/.
[14] “Eclipse,” http://www.eclipse.org/.
[15] “AppPerfect,” http://www.appperfect.com/.
[16] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings

of the 19th international symposium on Software testing and analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 241–252.

[17] H. Li and S. Thompson, “Let’s make refactoring tools user-extensible!”
in Proceedings of the Fifth Workshop on Refactoring Tools, ser. WRT
’12. New York, NY, USA: ACM, 2012, pp. 32–39.

[18] K. Maruyama and S. Yamamoto, “Design and implementation of an
extensible and modifiable refactoring tool,” in Proceedings of the 13th
International Workshop on Program Comprehension, ser. IWPC ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 195–204.

